
Iterative Refinement for Ill-conditioned Linear Equations.

Shin’ichi Oishi1,4, Takeshi Ogita2,4 and Siegfried M. Rump3,1

1Department of Applied Mathematics, Faculty of Science and Engineering,
Waseda University,

3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan
2 Department of Mathematics, College of Arts and Sciences,

Tokyo Woman’s Christian University,
2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan

3 Institute for Reliable Computing,
Hamburg University of Technology

Schwarzenbergstr. 95 21071 Hamburg Germany
4 CREST, JST, Japan

Abstract—This paper treats a linear equation

Av = b,

where A ∈ Fn×n and b ∈ Fn. Here, F is a set of
floating point numbers. Let u be the unit round-off
of the working precision and κ(A) = ∥A∥∞∥A−1∥∞
be the condition number of the problem. In this
paper, ill-conditioned problems with

1 < uκ(A) < ∞

are considered and an iterative refinement algo-
rithm for the problems is proposed. In this paper,
the forward and backward stability will be shown
for this iterative refinement algorithm.

1. Introduction

In this paper, we will consider the convergence
of an iterative refinement for a linear equation

Av = b, (1)

where A ∈ Fn×n and b ∈ Fn. Here, F is a set of
floating point numbers. Let u be the unit round-off
of the working precision and κ(A) = ∥A∥∞∥A−1∥∞
be the condition number of the problem. Here,
∥ · ∥∞ is the maximum norm defined by

∥v∥∞ = max
15i5n

|vi|, for v = (v1, v2, · · · , vn)T ∈ Rn

(2)
and

∥A∥∞ = max
15i5n

n∑
j=1

|Aij | for A = (Aij) ∈ Rn×n.

(3)
The superscript T denotes the transpose and R is
the set of real numbers. For well posed problems,
i.e., in case of uκ(A) < 1, it has been shown [1]-
[5] that the iterative refinement improves the for-
ward and backward errors of computed solutions

provided that the residuals are evaluated by ex-
tended precision, in which the unit round off u is,
for example, the order of u2, before rounding back
to the working precision. In this paper, we will
treat ill-conditioned problems with

1 < uκ(A) < ∞. (4)

We can assume without loss of generality that for a
certain positive integer k the following is satisfied:

ukκ(A) 5 β < 1. (5)

In Ref. [8], Rump has shown that for arbitrary
ill-conditioned matrices A, we can have good ap-
proximate inverses R1:k satisfying ∥R1:kA− I∥∞ 5
α < 1. Here, R1:k is obtained as

R1:k = R1 + R2 + · · · + Rk (6)

with Ri ∈ Fn×n and I is the n-dimensional unit
matrix. In Ref. [6], we have partially clarified the
mechanism of the convergence of Rump’s method.

Let A, B,C ∈ Fn×n. We assume that we have
an accurate matrix product calculation algorithm
[AB − C]k such that

D1:k = [AB − C]k (7)

satisfying∥∥∥∥∥
k∑

i=1

Di − (AB − C)

∥∥∥∥∥
∞

5 cuk∥AB − C∥∞. (8)

Here, D1:k is defined as

D1:k = D1 + D2 + · · · + Dk (9)

with Di ∈ Fn×n. Such algorithms have been pro-
posed by the present authors with c < 2.1 (See [7],
[9] and [10]).

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 516 -

Now we propose the following iterative refine-
ment algorithm:

v′ = [v − R1:k[Av − b]k]1. (10)

Put rk = [Av − b]k and let Φ(v) = [v − R1:krk]1.
Then, we can write

v′ = Φ(v). (11)

The following holds:

v′ = v − R1:k[(Av − b) + er] + em, (12)

where er = rk − (Av − b) and em ∈ Rn satisfying

∥er∥∞ 5 cuk∥Av − b∥∞ (13)

and
∥em∥∞ 5 cu∥v − R1:krk∥∞. (14)

In this paper, we will show the forward and back-
ward stability of the iterative algorithm (10). Fur-
thermore, numerical examples are also given for il-
lustrating the forward and backward stability of the
iterative refinement algorithm (10). The forward
stability of the algorithm guarantees that approx-
imate solutions generated by the algorithm con-
verge, while the backward stability means the sta-
bility of the algorithm against the rounding errors.

2. Convergence Theorem: Forward Stability

Let us consider

Av = b, (15)

where A ∈ Fn×n and b ∈ Fn. Let

1 < uκ(A) < ∞. (16)

We assume that we have a good approximate in-
verses R1:k satisfying

∥R1:kA − I∥∞ 5 α < 1. (17)

Here, R1:k is defined as

R1:k = R1 + R2 + · · · + Rk (18)

with Ri ∈ Fn×n. As mentioned in the previous sec-
tion in Ref.[8], Rump has proposed a method of cal-
culating such approximate inverses and in Ref.[6],
we have partially clarified the mechanism of the
convergence of Rump’s method. Further, we as-
sume also that the following is satisfied:

ukκ(A) 5 β < 1. (19)

We propose the following iterative refinement algo-
rithm:

vn = Φ(vn−1), Φ(v) = [v − R1:krk]1,
rk = [Av − b]k (n = 1, 2, · · ·) (20)

with any starting vector v0 ∈ Fn. The aim of this
section is to show the following theorem:

Theorem 1 Let vn be generated from (20) with
any starting vector v0 ∈ Fn. We assume the as-
sumptions (17) and (19). If

γ = (α + cβ + cαβ)(1 + cu) < 1, (21)

the relative forward error ∥vn − v∗∥∞/∥v∗∥∞ re-
duces until

∥vn − v∗∥∞
∥v∗∥∞

≈ u +
cu

1 − γ
. (22)

Here, for real numbers a and b, a ≈ b means that
a is approximately equal to b.

This implies the forward stability of the iterative
refinement algorithm (20).

3. Backward Stability

In this section, we will show the backward sta-
bility of the iterative refinement algorithm (20).

A normwise backward error of an approximation
v is defined by

η(v) = min{ε : (A + ∆A)v = b + ∆b,

∥∆A∥∞ 5 ε∥A∥∞,

∥∆b∥∞ 5 ε∥b∥∞}. (23)

It is known [13] that

η(v) =
∥r∥∞

∥A∥∞∥v∥∞ + ∥b∥∞
. (24)

Here, r = Av − b.
The next theorem shows the backward stability

of the iterative refinement algorithm (20):

Theorem 2 Let vn be generated from (20) with
any starting vector v0 ∈ Fn. We assume the as-
sumptions (17) and (19). If

γ = (α + cβ + cαβ)(1 + cu) < 1, (25)

the backward error η(v) reduces until

η(v) / c2u, (26)

where c2 is a certain constant. Here, for real num-
bers a and b, a / b means that a is approximately
equal to b or a is less than b.

This implies the backward stability of the itera-
tive refinement algorithm (20).

4. Numerical Examples Illustrating For-
ward and Backward Stability

In this section, we will present numerical exam-
ples illustrating the forward and the backward sta-
bility of the iterative refinement algorithm (20).

We have used the IEEE 754 double precision
floating point number system in these numerical
calculations. Thus, in the following calculations,
the unit round-off u is given as

1.11 × 10−16 < u = 2−53 < 1.12 × 10−16. (27)

- 517 -

4.1. Hilbert Matrix

Let H be the n × n Hilbert matrix. Let further
A = sH. Here, s is the minimum common multi-
plier of 1, 2, 3, · · · , n − 1. Furthermore,

b = Az, (28)

where, z ∈ Fn and zi = 1. We have solved Ax = b
for n = 20. In this example, 1.92×1016 < ∥A∥∞ <
1.93 × 1016, 1.92 × 1016 < ∥b∥∞ < 1.93 × 1016 and
2.44 × 1028 < κ(A) < 2.45 × 1028.

In this case, a good approximate inverse can be
constructed with k = 2 such that

∥RA − I∥∞ < α = 4.16 × 10−4, (29)

where
R = R1 + R2 (30)

with suitable R1, R2 ∈ F. The iterative refinement
algorithm (20) converges with 3 iterations. We fi-
nally have an approximate solution with the rela-
tive maximum error about 1.92 × 10−16. Further-
more, it is seen that

β = u2κ(A) < (1.2 × 10−16)2 × 2.45 × 1028

< 3.08 × 10−4. (31)

Table 1 shows the relative errors

∥v∗ − vi∥∞
∥v∗∥∞

(32)

and the backward errors η(vi) of approximate so-
lutions obtained by the iterative refinement calcu-
lations (20). These calculations are done by MAT-
LAB on Intel core 2 duo CPU.

Table 1: Hilbert matrix (n=20)

i ∥v∗ − vi∥∞/∥v∗∥∞ η(vi)
0 3.50 × 10−4 4.55 × 10−6

1 4.03 × 10−9 4.12 × 10−11

2 5.10 × 10−14 5.04 × 10−16

3 1.91 × 10−16 1.77 × 10−18

4 1.91 × 10−16 1.77 × 10−18

4.2. Rump’s Matrix (n=100)

Let A be n × n matrix generated by Rump’s
algorithm [12]. We choose n = 100 and b =
(1, 1, · · · , 1)T ∈ Fn. In this example, 1.04× 1016 <
∥A∥∞ < 1.05 × 1016, ∥b∥∞ = 1 and 1.74 × 10107 <
κ(A) < 1.75 × 10107.

In this case, a good approximate inverse can be
constructed with k = 8 such that

∥RA − I∥∞ < α = 1.86 × 10−4, (33)

where

R = R1 + R2 + · · · + R8 (34)

with suitable R1, R2, · · · , R8 ∈ F. The iterative
refinement algorithm (20) converges with 3 itera-
tions.

Table 2: Rump’s matrix (n=100)

i ∥v∗ − vi∥∞/∥v∗∥∞ η(vi)
0 7.51 × 10−6 3.98 × 10−14

1 5.98 × 10−11 5.61 × 10−19

2 4.88 × 10−16 2.46 × 10−19

3 3.18 × 10−19 6.58 × 10−19

4 3.18 × 10−19 6.58 × 10−19

Moreover, it is seen that

β = u8κ(A) < (1.12 × 10−16)8 × 1.75 × 10107

< 4.34 × 10−21. (35)

Table 3 shows the relative errors and the backward
errors of approximate solutions obtained by the it-
erative refinement calculations (20). The calcula-
tions are done by the same computational environ-
ment as that for the previous example.

4.3. Rump’s Matrix (n=300)

Let A be n × n matrix generated by Rump’s
algorithm [12]. We choose n = 300 and b =
(1, 1, · · · , 1)T ∈ Fn. In this example, 3.10 × 108 <
∥A∥∞ < 3.11 × 108, ∥b∥∞ = 1 and 6.28 × 1059 <
κ(A) < 6.29 × 1059.

In this case, a good approximate inverse can be
constructed with k = 5 such that

∥RA − I∥∞ < α = 1.16 × 10−9, (36)

where

R = R1 + R2 + · · · + R5 (37)

with suitable R1, R2, · · · , R5 ∈ F. The iterative re-
finement algorithm converges (20) with 1 iteration.

Moreover, it is seen that

β = u5κ(A) < (1.12 × 10−16)5 × 6.29 × 1059

< 1.11 × 10−20. (38)

Table 3 shows the relative errors and the backward
errors of approximate solutions obtained by the it-
erative refinement calculations (20). The calcula-
tions are done by the same computational environ-
ment as that for the previous example.

- 518 -

Table 3: Rump’s matrix (n=300)

i ∥v∗ − vi∥∞/∥v∗∥∞ η(vi)
0 8.02 × 10−12 1.42 × 10−17

1 8.10 × 10−23 4.07 × 10−19

2 8.10 × 10−23 4.07 × 10−19

References

[1] G.B.Moler, ”iterative refinement in floating
point”, J. Assoc. Comput. Mach., 14 316-321
(1967)

[2] R. D. Skeel, ”Iterative refinement implies nu-
merical stability for Gaussian elimination”,
Math. Comp., 35 817-832 (1980)

[3] N.J.Higham, ”Iterative refinement for linear
systems and LAPACK”, IMA J. Numer. Anal.
17 495-509 (1997).

[4] M.Jankowsky and H.Woznlakowski, ”Iterative
refinement implies numerical stability”, BIT
17 303-311 (1997).

[5] F.Tisseur, ”Newton’s method in floating point
arithmetic and iterative refinement of gener-
alized eigenvalue problems”, SIAM J. Matrix
Anal. Appl. 22 No.4 1038-1057 (2001).

[6] S. Oishi, K. Tanabe, T.Ogita, and S.M. Rump,
”Convergence of Rump’s method for inverting
arbitrary ill-conditioned matrices”, J. Comp.
and Appl. Math, 205 533-544 (2007).

[7] T. Ogita, S. M. Rump and S. Oishi: ”Accu-
rate Sum and Dot Product”, SIAM Journal on
Scientific Computing, 26/6,1955-1988,(2005)

[8] S.M.Rump:”Approximate inverses of almost
singular matrices still contain useful informa-
tion”, Technical Report 90.1, Faculty of In-
formation and Communication Sciences, Ham-
burg University of Technology (1990).

[9] S.M. Rump, T. Ogita, and S. Oishi, ”Accurate
Floating-point Summation I: Faithful Round-
ing”, accepted for publication in SIAM Jour-
nal on Scientific Computing. Preprint is avail-
able from

http://www.ti3.tu-harburg.de
/publications/rump.

[10] S.M. Rump, T. Ogita, and S. Oishi, ”Accu-
rate Floating-point Summation II: Sign, K-
fold Faithful and Rounding to Nearest”, sub-
mitted for publication in SIAM Journal on Sci-
entific Computing. Preprint is available from

http://www.ti3.tu-harburg.de
/publications/rump.

[11] T. Ohta, T. Ogita, S. M. Rump and S. Oishi:
”A Method of Verified Numerical Computa-
tion for Ill-conditioned Linear System of Equa-
tions”, Journal of JSIAM,15:3 (2005), pp. 269–
287 in Japanese.

[12] S. M. Rump: A class of arbitrarily ill-
conditioned floating-point matrices, SIAM J.
Matrix Anal. Appl., 12:4 (1991), 645–653.

[13] J. D. Rigal and J. Gaches:”On the compati-
vility of a given solution with the data of a
linear equation”, J. Assoc. Comput. Mach., 14
(1967), 543-548.

- 519 -

	Navigation page
	Session at a glance
	Technical program

