
A method of obtaining verified solutions for

linear systems suited for Java

K. Ozaki a,∗ T. Ogita b,c S. Miyajima c S. Oishi c S.M. Rump d

aGraduate School of Science and Engineering, Waseda University, Tokyo
169-8555, Japan

bCREST, Japan Science and Technology Agency (JST)
cFaculty of Science and Engineering, Waseda University, Tokyo 169-0072, Japan
dInstitut für Informatik III, Technische Universität Hamburg-Harburg, Hamburg

21071, Germany

Abstract

Recent development of Java’s optimization techniques makes Java one of the most
useful programming languages for numerical computations. This paper proposes
a numerical method of obtaining verified approximate solutions of linear systems.
Usual methods for verified computations use switches of rounding modes defined
in IEEE standard 754. However, such switches of rounding modes have not been
supported in Java. This method avoids using directed rounding, so that it is imple-
mentable on a wide range of programming languages including Java. Numerical ex-
periments using Java illustrate that the method can give a very accurate error bound
for an approximate solution of a linear system with almost same computational cost
as that for calculating an approximate inverse by the Gaussian elimination.

Key words: Verified computation, Java, linear system

1 Introduction

In this paper, we are concerned with a problem of verifying accuracy of an
approximate solution of a linear system

Ax = b , (1)

∗ Corresponding author.
Email address: k ozaki@suou.waseda.jp (K. Ozaki).

Preprint submitted to Elsevier Science 9 August 2005

where A is a real n×n matrix and b a real n-vector. For this problem, various
methods have been proposed (e.g. [12,13]) using the switch of rounding modes
defined in IEEE standard 754 double precision floating-point arithmetic. The
aim of this paper is to propose a numerical method of obtaining verified er-
ror bounds for approximate solutions of linear systems implementable on a
wide range of programming language including Java. Here, it should be ex-
plained why special attention must be paid for Java. On the one hand, Java
has remarkable splendid features. For instance, it is a portable programming
language, i.e., it is designed to be independent of operating systems and com-
pilers. Thus, once one develops a Java’s program, one can obtain the same
result on every platform. The performance of Java has recently been sur-
prisingly increased via developments of its optimization techniques such as
Just-In-Time (JIT) compiler and Hot Spot VM. As a result, recently, Java
has been used in high performance computing [6]. On the other hand, to keep
the portability, the switch of rounding modes in IEEE 754 standard has not
been supported in Java (See, [7]). To overcome this and develop a numerical
method of obtaining verified error bounds for approximate solutions of linear
systems is a main purpose of this paper.

Recently, Oishi and Rump [12] have developed a fast verification method for
an approximate solution of (1). Let R denote an approximate inverse of A and
I the n × n identity matrix. Oishi-Rump’s method is based on the following
fact: If R satisfies

‖RA− I‖∞ < 1 , (2)

then it is proven that A−1 exists and the following inequality holds for an
approximate solution x̃:

‖x̃−A−1b‖∞ ≤ ‖R(Ax̃− b)‖∞
1− ‖RA− I‖∞ (3)

To include quantities appeared in (2) and (3) by numerical computations, the
modes of rounding-upward and rounding-downward defined by IEEE standard
754 [1] are controlled dynamically in Oishi-Rump’s method. Since the switch
of rounding modes has not been supported portably in Java, this method
cannot be implemented on Java if one wants to keep the portability of a ver-
ification program. Namely, only a way of realizing such a switch in Java is
to use JNI (Java Native Interface). Since the use of JNI lessens Java’s porta-
bility, in this paper it is avoided the use of JNI. Very recently, Ogita, Rump
and Oishi [11] have proposed a verification method for linear systems. Ogita-
Rump-Oishi’s method does not use the directed rounding of IEEE754. Their
method uses only the rounding-to-nearest mode to give verified error bounds.
For the purpose, they have presented a priori error estimates for floating-

2

point arithmetic. Since Ogita-Rump-Oishi’s method uses such a priori error
estimates for floating-point arithmetic, it gives usually considerably overesti-
mated error bounds. The aim of this paper is to show that if we combine Ogita-
Rump-Oishi’s method with the accurate and portable dot product algorithm
proposed in [10], then this overestimation can be removed with additional com-
putational cost being almost negligible. Namely, by numerical experiments it
will be shown that the proposed method gives a very accurate error bound for
an approximate solution of a linear system with almost same computational
cost as that for calculating an approximate inverse of a coefficient matrix by
the Gaussian elimination.

2 Floating Point Arithmetic in Java

In Java, the formats of IEEE 754 single and double precisions are adopted with
respect to the floating-point numbers [4]. The rounding-to-nearest mode is set
up in default. However, the switch of rounding modes is not supported. The
extended precisions for single and double precisions are admitted by IEEE 754,
respectively. In Java, the extended precisions as “widefp mode” are set up in
default. However, such extended precisions depend on CPUs in use so that it
lessens portability of computational result. To keep the portability, one should
use “strictfp mode”. In this mode computations are executed strictly in IEEE
754 single or double precision. Therefore, computational results are always the
same in every computer environment provided that one uses strictfp mode.

Let F be a set of floating-point numbers. Let fl(· · ·) be the result of a floating-
point computations, where all operations inside parentheses are executed by
ordinary floating-point arithmetic only in rounding-to-nearest mode. We as-
sume that over/underflow do not occur (Even if considering the presence of
over/underflow, discussions in this paper do not change essentially).

We cite here the notations used in this paper. Let u be the unit roundoff
(especially, u = 2−53 in IEEE 754 double precision). For n ∈ N, we define γ̃n

by γ̃n := fl(nu/(1− nu)). For x = (x1, . . . , xn)T ∈ F
n and A = (aij) ∈ F

m×n,
the maximum norms are defined as

‖x‖∞ := max
1≤i≤n

|xi| and ‖A‖∞ := max
1≤i≤m

n∑
j=1

|aij | .

For a, b ∈ F and x, y ∈ F
n, we will use the following relations [11]:

|a + b| ≤ (1 + u)fl(|a + b|) (4)

3

(1 + u)n|a| ≤fl

(|a|
1− (n + 1)u

)
(5)

‖x‖∞ = fl(‖x‖∞) (6)

|xT ||y|≤fl

(|xT ||y|
1− (n + 1)u

)
(7)

|xT y|≤ |fl(xT y)|+ fl(γ̃2n+1|xT ||y|) (8)

Note that x ≤ y means xi ≤ yi for all i. Moreover, we denote by |x| the non-
negative vector with |x| = (|x1|, . . . , |xn|)T . For real matrices, similar notations
will be used.

3 Accurate Dot Product with Error Bound

In this section, we briefly review an accurate algorithm of calculating dot
products and matrix-vector products with error bounds proposed in [10].

For a, b ∈ F, it is well-known that there exist algorithms to transform the sum
a+b into x+y with x = fl(a+b), y ∈ F, i.e., a+b = x+y (Knuth [8]) and the
product a·b into x+y with x = fl(a·b), y ∈ F, i.e., a·b = x+y (Dekker [5]). We
denote the algorithms as [x, y] = TwoSum(a, b) and [x, y] = TwoProduct(a, b),
respectively (See, [10] for detail). These are so-called error-free transformations
of floating-point arithmetic. Using these error-free algorithms, Ogita, Rump
and Oishi developed the following algorithm to calculate dot product with
error bound in twice the working precision even in the presence of underflow.

Algorithm 1 (Ogita, Rump and Oishi [10]) For x, y ∈ F
n, the following

algorithm calculates an approximation res of xT y and its error bound err

such that res− err ≤ xT y ≤ res + err in twice the working precision.

function [res, err] = Dot2Err(x, y)

if 2nu ≥ 1, error(’inclusion failed’), end

[p, s] = TwoProduct(x1, y1) % p + s← x1 + y1

e = |s|
for i = 2 : n

[h, r] = TwoProduct(xi, yi) % h + r ← xi + yi

[p, q] = TwoSum(p, h) % p + q ← p + h

t = fl(q + r); s = fl(s + t); e = fl(e + |t|)
end

res = fl(p + s); δ = fl((nu)/(1− 2nu))

α = fl(u|res|+ (δe + 3u/u)) % u: underflow unit

err = fl(α/(1− 2u))

4

Algorithm 1 consists of only ordinary floating-point operations. Thus, we can
calculate an accurate dot product and its error bound without directed round-
ing. We can use Algorithm 1 in the calculation of matrix-vector products. As
a result, we have the following algorithm:

Algorithm 2 For A = (aij) ∈ F
m×n and x ∈ F

n, the algorithm calculates an
approximation y of Ax and its error bound r such that y − r ≤ Ax ≤ y + r.

function [y, r] = MV2Err(A, x)

[m, n] = size(A) % m× n matrix

for i = 1 : m

w = A(i, 1 : n) % w = (ai1, . . . , ain)

[yi, ri] = Dot2Err(wT , x)

4 Verification Method

In this section, we shall propose a numerical method of obtaining verified
error bounds for approximate solutions of the linear system (1). This method
avoids using directed rounding. Thus, it is implementable on a wide range of
programming languages including Java.

4.1 Ogita-Rump-Oishi’s Method

Ogita, Rump and Oishi [11] have proposed a verification method for the linear
system (1). Ogita-Rump-Oishi’s method does not use the directed rounding
of IEEE754 and use only the rounding-to-nearest mode to give verified error
bounds. For the purpose, they have presented a priori error estimates for
floating-point arithmetic in the estimation of (2).

From (3), it is easily derived that if α and β(α, β ∈ F) such that ‖RA −
I‖∞ ≤ α < 1 and ‖R(Ax̃− b)‖∞ ≤ β can be estimated, an error bound of an
approximate solution x̃ of (1) is given as

‖x̃−A−1b‖∞ ≤ fl

(
β/(1− α)

1− 3u

)
. (9)

Ogita-Rump-Oishi’s method gives a way of calculating α and β. Here, we shall
briefly review the method. First, the algorithm of calculating α is as follows:

5

Algorithm 3 (Ogita, Rump and Oishi [11]) For A ∈ F
n×n and R being

its approximate inverse, the following algorithm calculates an upper bound α
of ‖RA− I‖∞.

function α = Alpha.Std(A, R)

if (3n + 2)u ≥ 1, error(’verification failed’), end

α1 = fl(‖RA− I‖∞)

if α1 ≥ 1, error(’verification failed’), end

α2 = fl(‖|R|(|A|e)‖∞) % e = (1, . . . , 1)T

α = fl ((α1 + γ̃3n+2(α2 + 2))/(1− 2u))

From Algorithm 3, it holds approximately that

α ≈ α1 + nu · cond∞(A) � α1 + n2u · cond2(A) , (10)

where condp(A) denotes the condition number defined as condp(A) := ‖A‖p ·
‖A−1‖p for p = 2,∞. From (10), one can expect that Algorithm 3 can be
applicable provided cond2(A) � (n2u)−1. For instance, assume that n = 1000
and the use of IEEE 754 double precision. Then, the Algorithm 3 might be
applicable up to the problems with cond2(A) being (10002 · 2−53)−1 ≈ 1010.
This will be confirmed by numerical experiments in Section 5.

The algorithm of calculating β given by Ogita-Rump-Oishi is as follows:

Algorithm 4 (Ogita, Rump and Oishi [11]) For A ∈ F
n×n, b ∈ F

n, x̃
being an approximate solution of Ax = b and R an approximate inverse of A,
the following algorithm calculates an upper bound β1 on ‖R(Ax̃− b)‖∞.

function β1 = Beta.Std(A, b, x̃, R)

rmid = fl (Ax̃− b)

rrad = fl (γ̃2n+4(|A| |x|+ |b|))
q = fl (|R| (γ̃n+1 |rmid|+ rrad)/(1− (n + 3)u))

β1 = fl ((‖ |R rmid|+ q‖∞)/(1− 2u))

Here, let us characterize Algorithm 4. In case of x̃ being a good approximate
solution of Ax = b, big cancellations might occur in the course of calculating
a residual Ax̃− b. To be precise, it can be approximately estimated that

|Rrmid| ≤ |R| |rmid| ≈ u |R| |b| and q ≈ nu |R| (|A||x̃|+ 2|b|) .

Therefore, at the very end of Algorithm 4, the second term of numerator

6

may become much larger than the first term. This implies the existence of
overestimation, which cannot be avoided if one uses a priori error estimates.

4.2 A New Method

To eliminate overestimations pointed out in the previous subsection, we here
present an improved estimation method for ‖R(Ax̃− b)‖∞. For the purpose,
we use the accurate and portable algorithm of calculating dot product with er-
ror bound discussed in Section 3. We first consider a method of inclusion for the
residual Ax̃− b. Let Â and x̂ be given by Â = (A|b) and x̂ = (x̃1, ..., x̃n,−1)T ,
respectively. Obviously, Ax̃ − b = Âx̂, so that Algorithm 2 (MV2Err) can be
applied to Âx̂. Algorithm 2 generates an approximation rmid of Ax̃− b and its
error bound rrad such that rmid − rrad ≤ Ax̃ − b ≤ rmid + rrad. Then we have
(cf., for example, [12])

t1 − t2 ≤ R(Ax̃− b) ≤ t1 + t2 , (11)

where t1 and t2 are defined by t1 := R rmid and t2 := |R| rrad. It follows that

|R(Ax̃− b)| ≤ |R rmid|+ |R| rrad . (12)

Applying the estimation (8) to the matrix-vector product R rmid yields

|R rmid| ≤ s1 + s2 , (13)

where s1 and s2 are defined by s1 := |fl(R rmid)| = fl(|R rmid|) and s2 :=
fl(γ̃2n+1(|R| |rmid|)). Similarly, we have

|R| rrad ≤ fl

(|R| rrad

1− (n + 1)u

)
=: s3 . (14)

Inserting (13) and (14) into (12), we have

|R(Ax̃− b)| ≤ s1 + s2 + s3 . (15)

This and the results obtained by applying (4) to every components of the right
hand side of (12) yield

|R(Ax̃− b)| ≤ (1 + u)2fl (s1 + (s2 + s3)) . (16)

Note that it usually holds s2 + s3 	 s1, using (5) and (6), we finally have

7

‖R(Ax̃− b)‖∞≤‖(1 + u)2fl (s1 + (s2 + s3)) ‖∞
≤fl

(‖s1 + (s2 + s3)‖∞
1− 3u

)
=: β2 . (17)

We can now present the following theorem:

Theorem 1 Let A ∈ F
n×n and b ∈ F

n. Let R be an approximate inverse of A
and x̃ an approximate solution of Ax = b. Assume that rmid and rrad satisfy

rmid − rrad ≤ Ax̃− b ≤ rmid + rrad .

Then the following inequality holds in the absence of underflow:

‖R(Ax̃− b)‖∞ ≤ fl (‖s1 + (s2 + s3)‖∞/(1− 3u)) , (18)

where s1, s2 and s3 are defined by s1 := fl(|R rmid|), s2 := fl(γ̃2n+1(|R| |rmid|))
and s3 := fl (|R| rrad/(1− (n + 1)u)).

Now several estimations are in order. First, consider β2. It can be estimated
that

‖s1 + s2 + s3‖ ≈ ‖R rmid‖+ nu‖|R| |rmid|‖+ ‖|R| rrad‖ .

If ‖rrad‖ ≈ u‖rmid‖, i.e. if the norm of radius ‖rrad‖ is relatively small compared
with the norm of midpoint ‖rmid‖, then the third term can be neglected and

‖s1 + s2 + s3‖ ≈ ‖R rmid‖+ nu‖|R| |rmid|‖ .

Normally, ‖R rmid‖
 nu‖|R| |rmid|‖ holds so that

‖s1 + s2 + s3‖ ≈ ‖R rmid‖ .

Since using the accurate dot product algorithm explained in the previous
section one can calculate rmid and rrad as one uses higher precision arithmetic,
‖rrad‖ ≈ u‖rmid‖ might hold. Thus, it can be expected that β2 becomes a tight
upper bound of ‖R(Ax̃− b)‖∞.

Using Theorem 1 and Algorithm 2, we now present the following algorithm.

Algorithm 5 Let A, b, R and x̃ be as in Theorem 1, then the following algo-
rithm gives β2 such that ‖R(Ax̃− b)‖∞ ≤ β2.

function β2 = Beta.New(A, x̃, b, R)

8

[rmid, rrad] = MV2Err([A, b], [x̃;−1]) % Â = (A|b), x̂ = (x̃1, ..., x̃n,−1)T

s1 = fl(|R rmid|)
s2 = fl(γ̃2n+1(|R| |rmid|))
s3 = fl ((|R| rrad)/(1− (n + 1)u))

β2 = fl (‖s1 + (s2 + s3)‖∞ /(1− 3u))

Estimating α by Algorithm 3 and β by β2, (9) gives an error bound of an
approximate solution of Ax = b. In this calculation, no directed rounding
is used. Moreover, in this method 2n3 flops computation is needed for the
calculation of RA − I and other computations are O(n2). Thus theoretical
computational cost of the method is almost same as that for calculating an
inverse of an n×n matrix by the Gaussian elimination. In the remaining part
of this paper, using numerical experiments we will show that the method can
give a very accurate error bound for an approximate solution of a linear system
with almost same computational cost as that for calculating an approximate
inverse of a coefficient matrix by the Gaussian elimination.

5 Numerical Experiments

We now illustrate the effectiveness of the algorithm proposed in the previous
section. At present, some public domain numerical software libraries have been
developed for Java, for example, JLAPACK [2], JAMA [9] and JAMPACK
[14]. In Table 1, we display the comparison of computing time for matrix mul-
tiplication and that for solving linear systems by the above libraries. Here,
we used a computer with Pentium IV 1.7GHz CPU, J2SDK1.4.2 06 as Java
compiler and virtual machine (VM). Table 1 shows that JAMPACK is slower
than the other libraries because it seems to treat even real numbers as complex
numbers. From Table 1, we can confirm that JLAPACK can calculate matrix
multiplication and solve a linear system fairly faster than the others. Unfor-
tunately, JLAPACK has not supported the function of calculating the matrix
inverse yet. On the other hand, JAMA has already supported it and other
auxiliary functions. Considering these facts, we use JAMA for our numerical
experiments as building blocks.

Following four methods are implemented on a PC with Pentium IV 1.7GHz
CPU, J2SDK1.4.2 06 as Java compiler and VM with strictfp mode:

Method A Oishi-Rump method [12, Algorithms 3.1 and 3.2]
Method B Ogita-Rump-Oishi method (Algorithms 3 and 4)
Method C Method A with Algorithm 2
Method D Proposed method (Algorithms 3 and 5)

9

Table 1
Comparison of computing time (sec) by various matrix computation libraries.

Matrix multiplication Solving a linear system

n JLAPACK JAMA JAMPACK JLAPACK JAMA JAMPACK

100 0.02 0.02 0.07 0.06 0.02 0.31

500 1.07 2.32 5.82 0.81 0.88 2.09

1000 8.44 17.9 47.7 5.71 6.47 12.7

2000 66.6 142 383 43.1 49.0 94.1

Table 2
Comparison of error bounds on

∥∥x̃−A−1b
∥∥
∞ for various n.

n A B C D

100 １.43e-11 7.91e-11 2.28e-14 2.28e-14

500 2.55e-09 1.52e-08 8.75e-13 8.75e-13

1000 8.66e-09 5.16e-08 1.90e-12 1.90e-12

2000 6.10e-08 3.63e-07 3.95e-12 3.95e-12

All computations are done in double precision. In Methods A and C, we in-
troduce JNI for switch of rounding mode. In Methods B and D, to switch
rounding mode is not necessary so that Java’s portability is kept. We use
JAMA discussed in Section 5 with respect to calculating x̃ and R in (3).

First, we choose A an n×n matrix whose entries are pseudo-random floating-
point numbers uniformly distributed in [−1, 1]. We put b := fl(A · e) with
e := (1, . . . , 1)T . In Tables 2 and 3, we display the error bound for x̃ and its
computing time by applying the each method to (1) for various n, respectively.
In Table 3, the computing time for LU factorization (LU) and for calculating
R (INV) are also displayed.

By Table 2, we can confirm that Methods C and D give tighter error bounds
than Methods A and B. We can also confirm that Method D supplies almost
same error bounds with those given by Method C. Table 3 shows that Method
D is faster than Methods A and C. Moreover, it can be seen that the speed of
Method D becomes approximately equal to that of Method B as n increases.

Next, we vary the condition number cond2(A) of A ∈ F
1000×1000. In Table 4, we

display error bounds for x̃ when we apply the each method to (1) for various
cond2(A). Here, the entries of A and b are set similar to the previous example.
As x̃, we use the most accurate solution in double precision obtained by an
iterative refinement method (cf. [3, pp. 126–127]). The notation “–” means
that the verification failed.

10

Table 3
Comparison of computing time (sec) for various n.

n LU INV A B C D

100 0.02 0.05 0.07 0.04 0.10 0.07

500 0.86 2.90 4.63 2.35 4.95 2.54

1000 6.50 21.6 36.0 18.1 36.9 18.8

2000 50.0 174 284 143 287 145

Table 4
Comparison of error bounds on

∥∥x̃−A−1b
∥∥
∞ for various cond2(A) (n = 1000).

cond(A) A B C D

102 1.44e-11 9.49e-10 1.11e-16 1.11e-16

104 7.19e-10 4.68e-08 1.11e-16 1.11e-16

106 5.52e-08 3.66e-06 1.11e-16 1.11e-16

108 4.22e-06 2.68e-04 1.11e-16 1.11e-16

1010 3.54e-04 2.45e-02 1.11e-16 1.14e-16

1012 2.98e-02 – 1.14e-16 –

Table 4 shows that Methods A and B supply coarse error bounds when
cond2(A) is large even if x̃ has much more accuracy. As opposed to this, even
if cond2(A) is large, Methods C and D supply tight error bounds with almost
maximum accuracy in double precision. On the other hand, the verification
failed (α ≥ 1) in Methods B and D when cond2(A) = 1012. This comes from
the fact that Method D overestimates ‖RA − I‖∞ as seen from (10). This
result matches the discussions in Section 4.1.

In conclusion, numerical experiments using Java illustrate that although the
proposed method (Method D) can apply to the problems with less condition
number than Methods A and C, it can give a very accurate error bound for
an approximate solution of a linear system with almost same computational
cost as that for calculating an approximate inverse of a coefficient matrix by
the Gaussian elimination.

Acknowledgements

This research was partially supported by CREST program, Japan Science
and Technology Agency (JST), 21st Century COE Program (Productive ICT
Academia Program, Waseda University) and Grant-in-Aid for Young Scien-
tists (B) (16700017, 2004–2006) from the Ministry of Education, Science,

11

Sports and Culture of Japan.

References

[1] ANSI/IEEE, IEEE Standard for Binary Floating Point Arithmetic, Std 754–
1985 edition, IEEE, New York, 1985.

[2] B. Blount, JLAPACK – The LAPACK library in Java.
http://www.cs.unc.edu/Research/HARPOON/jlapack/

[3] G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edition, Johns Hopkins
University Press, Baltimore and London, 1996.

[4] J. Gosling, B. Joy, G. Steele, G. Bracha, The Java Language Specification,
Addison-Wesley, 2nd edition, 2000.

[5] T.J. Dekker, A floating-point technique for extending the available precision,
Numer. Math., 18: 224–242, 1971.

[6] S. Flynn-Hummel, V. Getov, F. Irigoin, Ch. Lengauer, High performance
computing and Java, Report No. 284, Report of the Dagstuhl Seminar 00341,
2000.

[7] W. Kahan, J.D. Darcy, How Java’s Floating-Point Hurts Everyone Everywhere,
manuscript, 2001.
http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf

[8] D.E. Knuth, The Art of Computer Programming: Seminumerical Algorithms,
volume 2, Addison-Wesley, Reading, Massachusetts, 1969.

[9] MathWorks Inc., NIST, JAMA – A Java Matrix Package.
http://math.nist.gov/javanumerics/jama/

[10] T. Ogita, S.M. Rump, S. Oishi, Accurate sum and dot product, SIAM J. Sci.
Comput., 26(6): 1955-1988, 2005.

[11] T. Ogita, S.M. Rump, S. Oishi, Verified solution of linear systems without
directed rounding, Technical Report, No. 2005-04, Advanced Research Institute
for Science and Engineering, Waseda University.

[12] S. Oishi, S.M. Rump, Fast verification of solutions of matrix equations, Numer.
Math., 90(4): 755–773, 2002.

[13] S.M. Rump, Verification methods for dense and sparse systems of equations,
Topics in Validated Computations – Studies in Computational Mathematics (J.
Herzberger ed.), 63–136, Elsevier, Amsterdam, 1994.

[14] G.W. Stewart, JAMPACK – A Java Package for Matrix Computations.
ftp://math.nist.gov/Jampack/Jampack/AboutJampack.html

12

