
in SIAM J. Sci. Comput. Volume 31, Issue 1, pp. 189-224 (2008)

ACCURATE FLOATING-POINT SUMMATION PART I: FAITHFUL ROUNDING ∗

SIEGFRIED M. RUMP † , TAKESHI OGITA ‡ , AND SHIN’ICHI OISHI §

Abstract. Given a vector of floating-point numbers with exact sum s, we present an algorithm for calculating a faithful

rounding of s, i.e. the result is one of the immediate floating-point neighbors of s. If the sum s is a floating-point number, we

prove that this is the result of our algorithm. The algorithm adapts to the condition number of the sum, i.e. it is fast for mildly

conditioned sums with slowly increasing computing time proportional to the logarithm of the condition number. All statements

are also true in the presence of underflow. The algorithm does not depend on the exponent range. Our algorithm is fast in

terms of measured computing time because it allows good instruction-level parallelism, it neither requires special operations

such as access to mantissa or exponent, it contains no branch in the inner loop, nor does it require some extra precision: The

only operations used are standard floating-point addition, subtraction and multiplication in one working precision, for example

double precision. Certain constants used in the algorithm are proved to be optimal.

Key words. maximally accurate summation, faithful rounding, error-free transformation, distillation, high accuracy,

XBLAS, error analysis

AMS subject classifications. 15-04, 65G99, 65-04

1. Introduction and previous work. We will present fast algorithms to compute high quality ap-
proximations of the sum and the dot product of vectors of floating-point numbers. Since dot products can
be transformed without error into sums, we concentrate on summation algorithms.

Since sums of floating-point numbers are ubiquitous in scientific computations, there is a vast amount of
literature to that, among them [2, 3, 7, 10, 13, 14, 18, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41,
42, 46, 47, 48, 49, 50], all aiming on some improved accuracy of the result. Higham [19] devotes an entire
chapter to summation. Accurate summation or dot product algorithms have various applications in many
different areas of numerical analysis. Excellent overviews can be found in [19, 32].

Most algorithms are backward stable, which means the relative error of the computed approximation is
bounded by a small factor times the condition number. Many algorithms [23, 24, 25, 36, 39, 46, 49, 48]
including those by Kahan, Babuška and Neumaier and others use compensated summation, i.e. the error of
the individual additions is somehow corrected. Usually the relative error of the result is bounded by eps

times the condition number of the sum, where eps denotes the relative rounding error unit. This is best
possible by a well known rule of thumb in numerical analysis.

However, Neumaier [36] presented an algorithm where the relative error of the result is bounded by eps2

times the condition number of the sum, an apparent contradiction to the cited rule of thumb. The key to
that result are error-free transformations. Neumaier reinvented a method (see Algorithm 2.5) by Dekker
[12] which transforms the sum a + b of two floating-point numbers into a sum x + y, where x is the usual
floating-point approximation and y comprises of the exact error. Surprisingly, x and y can be calculated

∗This research was partially supported by Grant-in-Aid for Specially Promoted Research (No. 17002012: Establishment of

Verified Numerical Computation) from the Ministry of Education, Science, Sports and Culture of Japan.
†Institute for Reliable Computing, Hamburg University of Technology, Schwarzenbergstraße 95, Hamburg 21071, Germany,

and Visiting Professor at Waseda University, Faculty of Science and Engineering, 3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555,

Japan (rump@tu-harburg.de).
‡Department of Mathematics, Tokyo Woman’s Christian University, 2–6–1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan,

and Visiting Associate Professor at Waseda University, Faculty of Science and Engineering, 3–4–1 Okubo, Shinjuku-ku, Tokyo

169–8555, Japan (ogita@lab.twcu.ac.jp).
§Department of Applied Mathematics, Faculty of Science and Engineering, Waseda University, 3–4–1 Okubo, Shinjuku-ku,

Tokyo 169–8555, Japan (oishi@waseda.jp).

1

2 S. M. RUMP, T. OGITA AND S. OISHI

using only 3 ordinary floating-point operations if |a| ≥ |b|. Recently such error-free transformations are used
in many areas [15, 30].

This error-free transformation was generalized to vectors in so-called distillation algorithms. Prominent
examples [7, 23, 24, 33, 31, 40, 3, 41, 46, 32, 50, 2, 37, 49, 48] include work by Bohlender, Priest, Anderson
and XBLAS. Here a vector pi of floating-point numbers is transformed into another vector p′i with equal
sum. Call such a process distillation. In our recent paper [37] we showed that it is possible to transform a
vector pi into a new vector p′i such that cond (

∑
p′i) is basically eps · cond (

∑
pi), whilst the transformation

is error-free, i.e.
∑

pi =
∑

p′i. Repeating this process may produce an accurate approximation of the sum
for arbitrary condition number.

After one distillation, the ordinary (recursive) sum of the distilled vector shares an accuracy as if calculated
in doubled working precision. This is the quality of results given by XBLAS [32, 2] or Sum2 in [37]. For many
practical applications this is sufficient. However, the relative error of the result depends on the condition
number. It does not allow, for instance, to compute the sign of a sum.

There are few methods [34, 39, 7, 40, 41, 46, 13, 14, 50] to compute an accurate approximation of a sum
independent of the condition number, with the ultimate goal of the faithfully rounded or rounded-to-nearest
exact sum. The aim of the present papers (Parts I and II) are such algorithms, and we shortly overview
known approaches.

One of the first distillation algorithms by Bohlender [7] falls in that regime, it computes a rounded-to-nearest
approximation of the sum. Usually only few distillations are needed for that, however, in worst case n−1, the
length of the input vector. Others followed like Priest’s [40, 41] doubly compensated summation which sorts
the input data and can guarantee after three distillations a maximum relative error of 2eps, independent of
the condition number. For a good overview on distillation algorithms see [3].

Other approaches use the fact that the exponent range of floating-point numbers is limited. One of the very
early algorithms by Malcolm [34] partitions the exponent range into a series of (overlapping) accumulators.
Summands pi are partitioned so that the parts can be added to some corresponding accumulator without
error. The size and the number of accumulators is calculated beforehand based on the length of the input
vector. In some way ARPREC [6] uses a similar method to add partial sums. Malcolm uses ideas by Wolfe
[47] who’s observations are presented without analysis.

Malcolm adds the accumulators in decreasing order and analyzes that the result is accurate to the last bit.
Another approach is one long accumulator as popularized by Kulisch [28]. Here the exponent range is repre-
sented by an array of “adjacent” fixed point numbers, summands are split and added to the corresponding
array element, and possible carries are propagated.

Zielke and Drygalla [50] follow yet another approach. They split the summands pi relative to max |pi| into
high order and low order parts. For a small summand the high order part may be zero. The splitting point
depends on the dimension and is chosen such that all high order parts can be added without error. This
process is repeated until all lower parts are zero, thus receiving an array of partial sums sj of the high order
parts representing the original sum by

∑
sj =

∑
pi. Next the overlapping parts of the partial sums sj are

eliminated by adding them with carry in increasing order, and finally the resulting partial sums are added
in decreasing order producing an accurate approximation of

∑
pi.

Zielke and Drygalla essentially present a Matlab-code (cf. Algorithm 3.1); they spend just 7 lines on page
29 on the description of this algorithm (in their 100-page paper [50] on the solution of linear systems of
equations, written in German), and another 2 lines on a much less accurate variant. No analysis is given,
underflow is excluded.

Our paper uses their idea to derive and analyze an algorithm producing a faithfully rounded approximation

ACCURATE FLOATING-POINT SUMMATION, PART I 3

res of the true sum s :=
∑

pi. This means that there is no floating-point number between res and s,
and provably res = s in case the true sum s itself is a floating-point number. Such an algorithm is of
fundamental interest both from a mathematical and numerical point of view, with many applications. For
example, it allows accurate calculation of the residual, the key to the accurate solution of linear systems. Or
it allows to compute sign(s) with rigor, a significant problem in the computation of geometrical predicates
[10, 20, 45, 9, 27, 8, 14, 38], where the sign of the value of a dot product decides whether a point is exactly
on a plane or on which side it is.

We improve Zielke and Drygalla’s approach in several ways. First, they continue distillations until the vector
of lower order parts is entirely zero. If there is only one summand small in magnitude, many unnecessary
distillations are needed. We improve this by giving a criterion to decide how many distillations are necessary
for a faithfully rounded result. We prove this criterion to be optimal. Second, they split the summands into
higher and lower order part by some scaling and round to integer. This turns out to be slow on today’s
architectures. Moreover their poor scaling restricts the exponent range of the input vector severely (cf.
Section 3). We derive a very simple and fast alternative. Third, we avoid the elimination of overlapping
parts of the partial sums by showing that the previous higher order part can be added without error to its
successor. Thus in each step only one higher order part t and a remaining vector p′i satisfying s = t +

∑
p′i

are constructed. Fourth, not all partial sums need to be added, but we show that adding up the lower order
parts p′i using ordinary summation suffices to guarantee faithful rounding. The analysis of that is nontrivial.
Finally, all results remain true in the presence of underflow, and the severe restriction of the exponent range
is removed.

As we will show, the computational effort of our method is proportional to the logarithm of the condition
number of the problem. An almost ideal situation: for simple problems the algorithm is fast, and slows down
with increasing difficulty.

Our algorithms are fast. We interpret fast not only by the number of floating-point operations, but in
terms of measured computing time. This means that special operations such as rounding to integer, access
to mantissa or exponent, branches etc. are avoided. As will be seen in the computational results, special
operations may slow down a computation substantially. Our algorithms use only floating-point addition,
subtraction and multiplication in working precision. No extra precision is required. Mostly our algorithm
to compute a faithfully rounded sum is even faster than XBLAS, although the result of XBLAS may be of
much less quality.

The paper is divided into two parts; Part I is organized as follows. First we introduce our notation in
Section 2 and list a number of properties. We need many careful floating-point estimations, frequently
heavily relying on bit representations and the definition of the floating-point arithmetic in use. Not only
that this is frequently quite tedious, such estimations are also sometimes presented in a colloquial manner
and not easy to follow. To avoid this and also to ensure rigor, we found it convenient and more stringent
to use inequalities. For this we developed a new machinery to characterize floating-point numbers, their bit
representations and to handle delicate situations. In this section we also define faithful rounding and give a
sufficient criterion for it.

In Section 3 we use this to develop an error-free transformation of a vector of floating-point numbers into an
approximation of the sum and some remaining part. The magnitude of the remaining part can be estimated,
so that we can derive a summation algorithm with faithful rounding in the following Section 4. Its stopping
criterion is proved to be optimal. We prove faithfulness which particularly includes the exact determination
of the sign. This is not only true in the presence of underflow, but the computed result is exact if it is in the
underflow range. We also estimate the computing time depending on the condition number.

In Part II [44] of this paper we define and investigate K-fold faithful rounding, where the result is represented

4 S. M. RUMP, T. OGITA AND S. OISHI

by a vector of K floating-point numbers, develop an algorithm with directed rounding and rounding-to-
nearest. Furthermore, algorithms for huge vector lengths up to almost eps−1 are given, and an improved
and efficient version only for sign determination. In both parts of this paper, computational results on a
Pentium 4, Itanium 2 and Athlon 64 processor are presented. For all algorithms presented in Part I and II
of this paper and in [37] we put a Matlab reference code on http://www.ti3.tu-harburg.de/rump .

As in [37] and [44], all theorems, error analysis and proofs are due to the first author of the present paper.

2. Basic facts. In this section we collect some basic facts for the analysis of our algorithms. Throughout
the paper we assume that no overflow occurs, but we allow underflow. We will use only one working precision
for all floating-point computations; as an example we sometimes refer to IEEE 754 double precision. This
corresponds to 53 bits precision including an implicit bit for normalized numbers. However, we stress that
the following analysis applies mutatis mutandis to other binary formats such as IEEE 754 single precision
by replacing the roundoff and underflow unit. Since we use floating-point numbers in only one working
precision, we can refer to them as “the floating-point numbers”.

The set of floating-point numbers is denoted by F, and U denotes the set of subnormal floating-point numbers
together with zero and the two normalized floating-point numbers of smallest nonzero magnitude. The
relative rounding error unit, the distance from 1.0 to the next smaller1 floating-point number, is denoted by
eps, and the underflow unit by eta, that is the smallest positive (subnormal) floating-point number. For
IEEE 754 double precision we have eps = 2−53 and eta = 2−1074. Then 1

2eps
−1eta is the smallest positive

normalized floating-point number, and for f ∈ F we have

f ∈ U ⇔ 0 ≤ |f | ≤ 1
2
eps−1eta .(2.1)

We denote by fl(·) the result of a floating-point computation, where all operations within the parentheses are
executed in working precision. If the order of execution is ambiguous and is crucial, we make it unique by
using parentheses. An expression like fl

(∑
pi

)
implies inherently that summation may be performed in any

order. We assume floating-point operations in rounding to nearest corresponding to the IEEE 754 arithmetic
standard [1]. Then floating-point addition and subtraction satisfy [19]

fl(a ◦ b) = (a ◦ b)(1 + ε) for a, b ∈ F, ◦ ∈ {+,−} and |ε| ≤ eps.(2.2)

Note that addition and subtraction is exact near underflow [16], so we need no underflow unit in (2.2). More
precisely, for a, b ∈ F we have

|a + b| ≤ eps−1eta ⇒ fl(a + b) = a + b and
fl(a + b) = 0 ⇔ a = −b .

(2.3)

We have to distinguish between normalized and subnormal floating-point numbers. As has been noted by
several authors [35, 26, 12], the error of a floating-point addition is always a floating-point number:

a, b ∈ F implies δ := fl(a + b)− (a + b) ∈ F .(2.4)

Fortunately, the error term δ can be computed using only standard floating-point operations. The following
algorithm by Knuth was already given in 1969 [26]. It is a first example of an error-free transformation.

Algorithm 2.1. Error-free transformation for the sum of two floating-point numbers.

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))

1Note that sometimes the distance from 1.0 to the next larger floating-point number is used; for example, Matlab adopts

this rule.

ACCURATE FLOATING-POINT SUMMATION, PART I 5

f � := ufp(f) 2 eps �
Fig. 2.1. Normalized floating-point number: unit in the first place and unit in the last place

Knuth’s algorithm transforms any pair of floating-point numbers (a, b) into a new pair (x, y) with

x = fl(a + b) and x + y = a + b.(2.5)

This is also true in the presence of underflow. An error-free transformation for subtraction follows since
F = −F.
The fl(·) notation applies not only to operations but to real numbers as well. For r ∈ R, fl(r) ∈ F is r

rounded to the nearest floating-point number. Following the IEEE 754 arithmetic standard tie is rounded
to even. For f1, f2 ∈ F and r ∈ R, the monotonicity of the rounding implies

f1 ≤ r ≤ f2 ⇒ f1 ≤ fl(r) ≤ f2(2.6)

f1 < fl(r) < f2 ⇒ f1 < r < f2 .(2.7)

In numerical analysis the accuracy of a result is sometimes measured by the “unit in the last place (ulp)”.
For the following often delicate error estimations the ulp-concept has the drawback that it depends on the
floating-point format and needs extra care in the underflow range.

We found it useful to introduce the “unit in the first place” (ufp) or leading bit of a real number by

0 6= r ∈ R ⇒ ufp(r) := 2blog2 |r|c ,(2.8)

where we set ufp(0) := 0. This gives a convenient way to characterize the bits of a normalized floating-point
number f : they range between the leading bit ufp(f) and the unit in the last place 2eps · ufp(f). The
situation is depicted in Figure 2.1.

In our analysis we will frequently view a floating-number as a scaled integer. For σ = 2k, k ∈ Z, we use the
set epsσZ, which can be interpreted as a set of fixed point numbers with smallest positive number epsσ. Of
course, F ⊆ etaZ. Note that (2.8) is independent of a floating-point format and it applies to real numbers
as well: ufp(r) is the value of the first nonzero bit in the binary representation of r. It follows

0 6= r ∈ R ⇒ ufp(r) ≤ |r| < 2ufp(r)(2.9)

r, r′ ∈ R and ufp(r) ≤ |r′| ⇒ ufp(r) ≤ ufp(r′) .(2.10)

We collect some properties. For σ = 2k, k ∈ Z, r ∈ R we have

σ′ = 2m, m ∈ Z and σ′ ≥ σ ⇒ epsσ′Z ⊆ epsσZ(2.11)

f ∈ F and |f | ≥ σ ⇒ ufp(f) ≥ σ(2.12)

f ∈ F ⇒ f ∈ 2eps · ufp(f)Z(2.13)

r ∈ epsσZ, |r| ≤ σ and epsσ ≥ eta ⇒ r ∈ F(2.14)

a, b ∈ F ∩ epsσZ and δ := fl(a + b)− (a + b) ⇒ fl(a + b), a + b, δ ∈ epsσZ(2.15)

a, b ∈ F, a 6= 0 ⇒ fl(a + b) ∈ eps · ufp(a)Z .(2.16)

Note that (2.13) is also true for f ∈ U. The assertions are clear except the last one (2.16), which is also
clear after a little thinking, and a rigorous proof follows easily with our machinery. The assertion is clear
for ab ≥ 0 by using (2.13) and (2.11) because then |fl(a + b)| ≥ max(|a|, |b|); so without loss of generality

6 S. M. RUMP, T. OGITA AND S. OISHI

it suffices to show fl(a − b) ∈ epsσZ for a ≥ b ≥ 0 and σ := ufp(a). If ufp(b) ≥ 1
2σ, then (2.13) implies

a, b ∈ epsσZ and the assertion follows by (2.15). And if ufp(b) < 1
2σ, then b < 1

2σ, and a ≥ σ implies
a− b > 1

2σ ∈ F. Hence (2.6) shows fl(a− b) ≥ 1
2σ ∈ F and (2.13) implies fl(a− b) ∈ epsσZ.

For later use we collect some more properties. For r ∈ R and r̃ = fl(r),

r̃ 6= 0 ⇒ ufp(r) ≤ ufp(r̃) ,(2.17)

r̃ ∈ F\U
r̃ ∈ U

⇒
⇒

|r̃ − r| ≤ eps · ufp(r) ≤ eps · ufp(r̃)
|r̃ − r| ≤ 1

2eta .
(2.18)

Note that a strict inequality occurs in (2.17) iff r̃ is a power of 2 and |r| < |r̃|. The assertions follow by
the rounding to nearest property of fl(·). Applying (2.18), (2.17), (2.9) and (2.3) to floating-point addition
yields for a, b ∈ F,

f = fl(a + b) ⇒ f = a + b + δ with |δ| ≤ eps · ufp(a + b) ≤ eps · ufp(f) ≤ eps|f | .(2.19)

We will frequently need this refined error estimate which is up to a factor 2 better than the standard
estimation (2.2). Note that (2.19) is also true in the presence of underflow because in this case δ = 0, the
addition is exact. The next is a refined estimation of the size and error of a sum of floating-point numbers.

neps ≤ 1, ai ∈ F and |ai| ≤ σ ⇒ |fl(
∑n

i=1 ai)| ≤ nσ and

|fl(
∑n

i=1 ai)−
∑n

i=1 ai| ≤ n(n−1)
2 epsσ .

(2.20)

Estimation (2.20) is sometimes useful to avoid unnecessary quadratic terms and it is valid for any order of
summation. Both inequalities follow by induction: For s̃ := fl(

∑
i 6=k ai) we have |s̃ + ak| ≤ nσ. If nσ is in

the overflow range but fl(
∑

ai) is not, the assertions are valid anyway. Otherwise neps ≤ 1 implies nσ ∈ F,
and (2.6) proves |fl(s̃ + ak)| ≤ nσ. For the second inequality in (2.20) we distinguish two cases. Firstly, if
|s̃ + ak| = nσ, then |s̃| = (n− 1)σ and |ak| = σ, so that fl(s̃ + ak) = s̃ + ak. Secondly, if |s̃ + ak| < nσ, then
ufp(s̃ + ak) ≤ (n− 1)σ because ufp(·) is a power of 2. Hence (2.19) implies

|fl(s̃ + ak)−
n∑

i=1

ai| ≤ |fl(s̃ + ak)− (s̃ + ak)|+ |s̃−
∑

i 6=k

ai|

≤ eps · ufp(s̃ + ak) +
1
2
(n− 1)(n− 2)epsσ

≤ 1
2
n(n− 1)epsσ ,

We mention that the factor can be improved to a little more than n2/3, but we do not need this in the
following.

The ufp concept also allows simple sufficient conditions for the fact that a floating-point addition is exact.
For a, b ∈ F and σ = 2k, k ∈ Z,

a, b ∈ epsσZ and |fl(a + b)| < σ ⇒ fl(a + b) = a + b and
a, b ∈ epsσZ and |a + b| ≤ σ ⇒ fl(a + b) = a + b .

(2.21)

We only need to prove the second part since fl(|a + b|) < σ and (2.7) imply |a + b| < σ. To see the second
part we first note that a + b ∈ epsσZ. By (2.3) the addition is exact if |a + b| ≤ 1

2eps
−1eta, and also if

|a + b| = σ. Otherwise, (2.9) and (2.12) yield σ > |a + b| ≥ ufp(a + b) ≥ 1
2eps

−1eta since 1
2eps

−1eta is a
power of 2, so epsσ ≥ 2eps · ufp(a + b) ≥ eta and (2.14) do the job.

The well known result by Sterbenz [19, Theorem 2.5] says that subtraction is exact if floating-point numbers
a, b ∈ F of the same sign are not too far apart. More precisely, for a, b ≥ 0 we have

1
2
a ≤ b ≤ 2a ⇒ fl(b− a) = b− a.(2.22)

ACCURATE FLOATING-POINT SUMMATION, PART I 7

We mention that a proof is not difficult with our machinery. If b ≥ a, then (2.13) implies a, b, a−b ∈ 2epsσZ
for σ := ufp(a). By assumption and (2.9), |b− a| = b− a ≤ a < 2σ, and (2.21) proves this part. For b < a,
(2.13) implies a, b, a − b ∈ 2epsσZ for σ := ufp(b), and similarly |b − a| = a − b ≤ b < 2σ and (2.21) finish
the proof.

We define the floating-point predecessor and successor of a real number r with min{f : f ∈ F} < r < max{f :
f ∈ F} by

pred(r) := max{f ∈ F : f < r} & succ(r) := min{f ∈ F : r < f} .

Using the ufp concept, the predecessor and successor of a floating-point number can be characterized as
follows (note that 0 6= |f | = ufp(f) is equivalent to f being a power of 2).

Lemma 2.2. Let a floating-point number 0 6= f ∈ F be given. Then

f /∈ U and |f | 6= ufp(f) ⇒ pred(f) = f − 2eps · ufp(f) and f + 2eps · ufp(f) = succ(f) ,

f /∈ U and f = ufp(f) ⇒ pred(f) = (1− eps)f and (1 + 2eps)f = succ(f) ,

f /∈ U and f = −ufp(f) ⇒ pred(f) = (1 + 2eps)f and (1− eps)f = succ(f) ,

f ∈ U ⇒ pred(f) = f − eta and f + eta = succ(f) .

For any f ∈ F, also in underflow,

pred(f) ≤ f − eps · ufp(f) ≤ f + eps · ufp(f) ≤ succ(f) .(2.23)

For f /∈ U,

f − 2eps · ufp(f) ≤ pred(f) < succ(f) ≤ f + 2eps · ufp(f) .(2.24)

Remark. Note that we defined U in (2.1) to contain ± 1
2eps

−1eta, the smallest normalized floating-point
numbers.

Proof. For f /∈ U and |f | 6= ufp(f), use ufp(f) < |f | < 2ufp(f), and |f | = ufp(f) is equivalent to |f | being
a power of 2. The rest is not difficult to see. ¤

The aim of this paper is to present a summation algorithm computing a faithfully rounded exact result of
the sum. That means [12, 41, 11] that the computed result must be equal to the exact result if the latter
is a floating-point number, and otherwise it must be one of the immediate floating-point neighbors of the
exact result.

Definition 2.3. A floating-point number f ∈ F is called a faithful rounding of a real number r ∈ R if

pred(f) < r < succ(f) .(2.25)

We denote this by f ∈ 2(r). For r ∈ F this implies f = r.

For general r /∈ F, exactly two floating-point numbers satisfy f ∈ 2(r), so at maximum half a bit accuracy
is lost compared to rounding to nearest. Conversely, for the computation of a faithful rounding of a real
number r it suffices to know r up to a small error margin. In contrast, the rounded-to-nearest fl(r) requires
ultimately to know r exactly, namely if r is the midpoint of two adjacent floating-point numbers. This
requires substantial and often not necessary computational effort. Our Algorithm NearSum in Part II of this
paper computes the rounded to nearest result. The computing time depends in this case on the exponent
range of the summands rather than the condition number of the sum.

8 S. M. RUMP, T. OGITA AND S. OISHIpred(~r) ~r = 2k ~r(1 + eps) succ(~r)rr + Æ oating-pointnumbers
Fig. 2.2. Faithful rounding near a power of 2

In contrast, the computing time of Algorithm 4.5 (AccSum) for computing a faithfully rounded result of the
sum of floating-point numbers is proportional to the logarithm of the condition number of the sum and
independent of the exponent range of the summands, which is not true for Malcolm’s approach [34] and the
long accumulator [28].

Suppose r + δ is the exact result of a summation, composed of a (real) approximation r and an error term
δ. Next we establish conditions on δ to ensure that fl(r) is a faithful rounding of r + δ. The critical case is
the change of exponent at a power of 2, as depicted in Figure 2.2.

Lemma 2.4. Let r, δ ∈ R and r̃ := fl(r). If r̃ /∈ U suppose 2|δ| < eps|r̃|, and if r̃ ∈ U suppose |δ| < 1
2eta.

Then r̃ ∈ 2(r + δ), that means r̃ is a faithful rounding of r + δ.

Proof. According to Definition 2.3 we have to prove pred(r̃) < r+δ < succ(r̃). If r̃ ∈ U, then |r̃−r| ≤ 1
2eta

by (2.18), so Lemma 2.2 yields

pred(r̃) = r̃ − eta < r̃ − |r̃ − r|+ δ ≤ r + δ ≤ r̃ + |r̃ − r|+ δ < r̃ + eta = succ(r̃)

and finishes this part. It remains to treat the case r̃ /∈ U.

Then ufp(r̃) ≤ |r̃| < 2ufp(r̃) by (2.9), so |δ| < eps · ufp(r̃). Suppose r ≤ r̃. Then rounding to nearest implies

0 ≤ r̃ − r ≤ 1
2
(r̃ − pred(r̃)) and |δ| < 1

2
(r̃ − pred(r̃)) ,

where the latter follows directly from Lemma 2.2 if |r̃| is not a power of 2, and otherwise by 2|δ| < eps|r̃| =
eps · ufp(r̃) = r̃ − pred(r̃). Hence (2.23) yields

pred(r̃) = r̃ − (r̃ − pred(r̃)) < r̃ − (r̃ − r)− |δ| ≤ r + δ ≤ r̃ + δ < r̃ + eps · ufp(r̃) ≤ succ(r̃) .

The case r > r̃ follows similarly. ¤

A faithfully rounded result satisfies some weak ordering properties. For f, f1, f2 ∈ F, r ∈ R and f ∈ 2(r),
i.e. f is a faithful rounding of r, one verifies

f1 < f < f2 ⇒ f1 < r < f2

f1 < r < f2 ⇒ f1 ≤ f ≤ f2 .
(2.26)

As has been noted in (2.4), the error of a floating-point addition is always a floating-point number. Fortu-
nately, rather than Algorithm 2.1 (TwoSum) which needs 6 flops, we can use in our applications the following
faster algorithm due to Dekker [12], requiring only 3 flops. Again, the computation is very efficient because
only standard floating-point addition and subtraction is used and no branch is needed.

Algorithm 2.5. Compensated summation of two floating-point numbers.

function [x, y] = FastTwoSum(a, b)
x = fl(a + b)
q = fl(x− a)
y = fl(b− q)

ACCURATE FLOATING-POINT SUMMATION, PART I 9

In Dekker’s original algorithm, y is computed by y = fl((a−x)+b), which is equivalent to the last statement
in Algorithm 2.5 because F = −F and fl(−r) = −fl(r) for r ∈ R. For floating-point arithmetic with rounding
to nearest and base 2, e.g. IEEE 754 arithmetic, Dekker [12] showed in 1971 that the correction is exact
if the input is ordered by magnitude, that is x + y = a + b provided |a| ≥ |b|. In [37] we showed that the
obvious way to get rid of this assumption is suboptimal on today’s computers because a branch slows down
computation significantly.

Algorithm 2.5 (FastTwoSum) is an error-free transformation of the pair of floating-point numbers (a, b) into
a pair (x, y). Algorithm 4.5 (AccSum) to be presented can also be viewed as an error-free transformation
of a vector p into floating-point numbers τ1, τ2 and a vector p′ such that

∑
pi = τ1 + τ2 +

∑
p′i, and

res := fl(τ1 + (τ2 +
∑

p′i)) is the faithfully rounded sum
∑

pi. To prove this we need to refine the analysis
of Algorithm 2.5 by weakening the assumption |a| ≥ |b|: The only assumption is that no trailing nonzero bit
of the first summand a is smaller than the least significant bit of the second summand b.

Lemma 2.6. Let a, b be floating-point numbers with a ∈ 2eps · ufp(b)Z. Let x, y be the results produced by
Algorithm 2.5 (FastTwoSum) applied to a, b. Then

x + y = a + b , x = fl(a + b) and |y| ≤ eps · ufp(a + b) ≤ eps · ufp(x) .(2.27)

Furthermore,

q = fl(x− a) = x− a and y = fl(b− q) = b− q ,(2.28)

that is the floating-point subtractions x− a and b− q are exact.

Remark. Note that |a| ≥ |b| implies ufp(a) ≥ ufp(b), which in turn by (2.13) and (2.11) implies a ∈
2eps · ufp(b)Z, the assumption of Lemma 2.6.

Proof of Lemma 2.6. Let fl(a+b) = a+b+δ and denote σ := 2ufp(b). Note that a, b ∈ epsσZ and |b| < σ.
If σ ≤ |a|, then |b| < |a| and we can use Dekker’s result [12]. Otherwise, |a + b| < 2σ, so (2.19) implies
|δ| ≤ epsσ. In fact, either |δ| = epsσ or δ = 0 by (2.15). Hence |x− a| = |b + δ| ≤ pred(σ) + epsσ ≤ σ, so
(2.21) yields q = fl(x− a) = x− a, and therefore y = fl(b− q) = fl(−δ) = −δ = b− q, proving (2.28). Hence
x + y = x− δ = a + b. The estimation on |y| = |δ| follows by (2.19), and this finishes the proof. ¤

Lemma 2.6 may also offer possibilities for summation algorithms based on sorting: To apply FastTwoSum it
suffices to “sort by exponent”, which has complexity O(n).

3. Extraction of high order parts. In [50] Zielke and Drygalla presented an accurate dot product
algorithm. Their Matlab source code is repeated in Algorithm 3.1. In the first six lines, the dot product∑

aibi is transformed into the sum
∑

vi of length 2n using Veltkamp’s algorithm TwoProduct [12]. Provided
no over- or underflow occurs, this transformation is error-free, i.e.

∑n
i=1 aibi =

∑2n
i=1 vi.

We repeat their main idea in technical terms. Let 2n floating-point numbers vi be given. First emax ∈ N is
computed such that max |vi| < 2emax, and M := dlog2 2ne such that 2n ≤ 2M. Then, for eps = 2−53, they
extract in line 13 the 54−M “bits” from emax− 1 downto emax− (54− M) of vi into leading parts gν and
a vector of remainder parts (stored in the same vector v), and add the gν into s1. The value M should
be chosen so that the sum of the gν is exact. Then they continue by extracting the 54 − M “bits” from
emax − (54 − M) − 1 downto emax − 2(54 − M) of the remainder part and sum them into s2, and so forth.
This process is continued until the vector of remainder parts is entirely zero or in the underflow range. Note
that the (scaled) intermediate sums sj may overlap. If the sum of the gν is error-free, then after execution
of line 15 it holds

2n∑
ν=1

vν =
jmax∑

j=1

sj · 2emax−j·k ,(3.1)

10 S. M. RUMP, T. OGITA AND S. OISHI

where jmax denotes the length of the array s.

Algorithm 3.1. The Matlab code by Zielke and Drygalla [50]

function y = accdot(a,b,n)

01 X = a.*b;

02 p = 2^27 + 1;

03 h = p*a; a1 = h - (h - a); a2 = a - a1;

04 h = p*b; b1 = h - (h - b); b2 = b - b1;

05 x = (((a1.*b1 - X) + a1.*b2) + b1.*a2) + b2.*a2;

06 v = [X; x];

07 ma = max(abs(X));

08 [mmax,emax] = log2(ma); q = 2^emax;

09 k = floor(54 - log(2*n)/log(2)); p = 2^k;

10 i = 0;

11 while any(v ~= zeros(2*n,1)) & (q/p > 2^(-1023))

12 i = i + 1;

13 q = q/p; g = fix(v/q); s(i) = sum(g); v = v - g*q;

14 end

15 i = i + 1; s(i) = sum(v)*p/q; ue = 0;

16 for j = i : (-1) : 1

17 t = s(j) + ue; ue = floor(t/p); s(j) = t - ue*p;

18 end

19 y = ue;

20 for j = 1 : i, y = s(j) + y*p; end

21 y = y*q/p;

Next the overlapping parts of the intermediate sums sj are eliminated in lines 16 to 18 starting with j = jmax.
Finally, the scaled sj are added in line 20 starting with j = 1, and in line 21 a final scaling takes place.

The authors also mention a faster, though much less accurate method, by extracting only the leading 54−M

bits and adding the remainder terms, accepting accumulation of rounding errors. A similar method was
used in “poor men’s residual (lssresidual)” in INTLAB [43] to approximate the residual Ax− b of a linear
system, a purely heuristic, improved approximation.

For neither method Zielke and Drygalla give an error analysis. The accuracy of the result of their algorithm
is not clear. At least the summation part (from line 7) does not necessarily produce a faithfully rounded
result: For example, the vector v = [1−eps 1−eps 7eps 0] yields the result y = 2, whereas the true
sum satisfies

4∑
ν=1

vν = 2 + 5eps > 2 + 4eps = succ(2) .

Note, however, that this vector v cannot be produced by lines 1 − 5. Moreover, a poor scaling of the
summands is used, severely restricting the exponent range. Consider

a = [2458 pred(2−458) − pred(2−458)]T and b = [1 1 1]T ,

where “pred” denotes the next smaller floating-point number. Due to poor scaling, their Algorithm 3.1
computes the result inf. This is because with emax = 459, k = 51 and jmax = 21 we have q/p =
2emax−jmax·k = 2−612, after line 15 the vector s has jmax = 21 elements with the only nonzero element s1 = 250,

ACCURATE FLOATING-POINT SUMMATION, PART I 11

53 �M bits 53 �M bits 53 �M bits
Fig. 3.1. Extraction scheme based on [50]

� = 2k eps� = 2k�53 pp0q
Fig. 3.2. ExtractScalar: error-free transformation p = q + p′

so that lines 20 and 21 compute

y =
(jmax∑
j=1

sj · 2(jmax−j)k
) · 2emax−jmax·k = 21070 · 2−612 = 2458 .

However, the intermediate result 21070 causes an overflow. Note that p ≈ [7.4 ·10137 1.3 ·10−138 −1.3 ·10−138]
is far from over- or underflow since max{f ∈ F} ≈ 1.8 · 10308.

Zielke and Drygalla’s algorithm can be improved in several ways. First, the extraction can be stopped when
the remainder parts are small enough, only the necessary intermediate sums sj are computed. Second, the
extraction in line 13 will be improved significantly, see below. Third, the elimination of the overlapping
parts in lines 18 to 20 is unnecessary. Fourth, there is an easier way to compute the final result. Doing this
requires an analysis. In particular the constant k in line 9 has to be computed correctly.

Our approach follows a similar scheme as depicted in Figure 3.1, where we carefully estimate how many bits
have to be extracted to guarantee a faithful rounding of the result. We push the approach to the limits by
showing that our constants are optimal.

The inner loop of the method requires to split a floating-point number p ∈ F according to Figure 3.2, which
is done by scaling and chopping (fix) in line 13 in Algorithm 3.1. There are other possibilities, for example
to round from floating-point to integer (rather than chopping), or the assignment of a floating-point number
to a long integer (if supported by the hardware in use). Also direct manipulation by accessing mantissa
and exponent is possible. However, all these methods slow down the extraction significantly, often by an
order of magnitude and more compared to our following Algorithm 3.2 (ExtractScalar). We will show
corresponding performance data in Section 5.

For our splitting as depicted in Figure 3.2, neither the high order part q and low order part p′ need to match
bitwise with the original p, nor must q and p′ have the same sign; only the error-freeness of the transformation
p = q + p′ is mandatory. This is achieved by the following fast algorithm, where σ denotes a power of 2 not
less than |p|.

12 S. M. RUMP, T. OGITA AND S. OISHI

Algorithm 3.2. Error-free transformation extracting high order part.

function [q, p′] = ExtractScalar(σ, p)
q = fl ((σ + p)− σ)
p′ = fl(p− q)

There is an important difference to Dekker’s splitting [12]. There, a 53-bit floating-point number is split
into two parts relative to its exponent, and using a sign bit both the high and the low part have at most
26 significant bits in the mantissa. In ExtractScalar a floating-point number is split relative to σ, a fixed
power of 2. The higher and the lower part of the splitting may have between 0 and 53 significant bits,
depending on σ. The splitting for p ∈ F and −p need not be symmetric because σ is positive. For example,
σ = 253 splits p = 1 into q = 0 and p′ = 1 because of rounding tie to even, whereas p = −1 is split into
q = −1 and p′ = 0.

The clever way of splitting2 in Algorithm 3.2 (ExtractScalar) is crucial for the performance since it is in
the inner loops of our algorithms. We think this method is known, at least similar ideas are around [17, 6].
However, we do not know of an analysis of Algorithm 3.2, so we develop it in the following lemma.

Lemma 3.3. Let q and p′ be the results of Algorithm 3.2 (ExtractScalar) applied to floating-point numbers
σ and p. Assume σ = 2k ∈ F for some k ∈ Z, and assume |p| ≤ 2−Mσ for some 0 ≤ M ∈ N. Then

p = q + p′ , |p′| ≤ epsσ , |q| ≤ 2−Mσ and q ∈ epsσZ .(3.2)

Proof. We first note that ExtractScalar(σ, p) performs exactly the same operations in the same order
as FastTwoSum(σ, p), so |p| ≤ σ and Lemma 2.6 imply p′ = p − q. If |p| = σ, then p′ = 0, otherwise (2.27)
implies |p′| ≤ eps · ufp(σ + p) ≤ epsσ. Furthermore, q ∈ epsσZ follows by (2.16).

Finally we prove |q| ≤ 2−Mσ. First, suppose σ + sign(p)2−Mσ is a floating-point number. Then σ + p is in
the interval with floating-point endpoints σ and σ + sign(p)2−Mσ, so (2.6) implies that x := fl(σ + p) is in
that interval and |q| = |x − σ| ≤ 2−Mσ follows. Second, suppose σ + sign(p)2−Mσ is not a floating-point
number. Then fl(σ + sign(p)2−Mσ) = σ because sign(p)2−Mσ is a power of 2 and rounding to nearest is tie
to even, so monotonicity of the rounding implies fl(σ + p) = σ and q = 0. ¤

Remark. As is seen from the last part of the proof, rounding tie to even is necessary to ensure |q| ≤ 2−Mσ.

Following we adapt Algorithm 3.2 (ExtractScalar) to the error-free transformation of an entire vector. For
this case we prove that the high order parts can be summed up without error. For better readability and
analysis the extracted parts are stored in a vector qi. In a practical implementation, the vector q is not
necessary but only its sum τ .

Algorithm 3.4. Error-free vector transformation extracting high order part.

function [τ, p′] = ExtractVector(σ, p)
τ = 0
for i = 1 : n

[qi, p
′
i] = ExtractScalar(σ, pi)

τ = fl(τ + qi)
end for

2This idea was pointed out to the second author by Prof. Yasunori Ushiro.

ACCURATE FLOATING-POINT SUMMATION, PART I 13

� = 2k eps� = 2k�532k�M
input p output p0

bold parts sum to �
Fig. 3.3. ExtractVector: error-free transformation

∑
pi = τ +

∑
p′i

Algorithm 3.4 proceeds as depicted in Figure 3.3. Note that the loop is well-suited for today’s compilers
optimization and instruction-level parallelism.

Note again that the low order parts, which are collected in p′, neither need to be bitwise identical to those of
p nor do they need to have the same sign. The important property is that the transformation is performed
without error, i.e.

∑
pi = τ +

∑
p′i, and that |p′i| stays below epsσ. The validity of the algorithm is

demonstrated by the following theorem.

Theorem 3.5. Let τ and p′ be the results of Algorithm 3.4 (ExtractVector) applied to σ ∈ F and a vector
of floating-point numbers pi, 1 ≤ i ≤ n. Assume σ = 2k ∈ F for some k ∈ Z, n < 2M for some M ∈ N and
|pi| ≤ 2−Mσ for all i. Then

n∑

i=1

pi = τ +
n∑

i=1

p′i , max |p′i| ≤ epsσ , |τ | ≤ n2−Mσ < σ and τ ∈ epsσZ .(3.3)

If 22Meps ≤ 1, then

|fl(τ + T)| < σ for T := fl(
n∑

i=1

p′i) .(3.4)

Algorithm 3.4 (ExtractVector) needs 4n +O(1) flops.

Remark 1. The limitation to n < 2M is necessary to ensure (3.4) as is shown by a vector of length 2M with
all elements equal to 2−Mσ.

Remark 2. Note that for (3.3) we have no assumption on the size of M . However, for extremely large M

with 2Meps ≥ 1, |pi| ≤ 2−Mσ implies that p′i = pi except for pi = −epsσ, so not much is gained.

Proof of Theorem 3.5. Lemma 3.3 implies pi = qi + p′i, |p′i| ≤ epsσ, |qi| ≤ 2−Mσ and qi ∈ epsσZ for
all i ∈ {1, · · · , n}. So τ ∈ epsσZ, and

∑ |qi| ≤ n2−Mσ < σ and (2.21) imply τ = fl(
∑

qi) =
∑

qi. This
proves (3.3). To show (3.4) first note that we may assume σ /∈ U, because otherwise all p′i are zero and the
assertion is trivial. Now (3.3) and (2.20) imply |T | ≤ nepsσ, so Lemma 2.2 implies

|τ + T | < (n2−M + neps)σ ≤ (2M − 1)(2−M + eps)σ

= (1− 2−M (1− 22Meps)− eps)σ ≤ (1− eps)σ

= pred(σ)

because σ /∈ U, so that (2.6) implies |fl(τ + T)| = fl(|τ + T |) ≤ pred(σ) < σ. ¤

14 S. M. RUMP, T. OGITA AND S. OISHI

Note that (3.3) requires no assumption on σ other than being a power of 2 and bounding 2M |pi|; σ may well
be in the underflow range.

To apply Theorem 3.5 the best (smallest) value for M is dlog2(n + 1)e. To avoid the use of the binary
logarithm, this can be calculated by the following algorithm.

Algorithm 3.6. Computation of 2dlog2 |p|e for p 6= 0.

function L = NextPowerTwo(p)
q = eps−1p

L = fl(|(q + p)− q|)
if L = 0

L = |p|
end if

Theorem 3.7. Let L be the result of Algorithm 3.6 (NextPowerTwo) applied to a nonzero floating-point
number p. If no overflow occurs, then L = 2dlog2 |p|e.

Remark. For simplicity we skipped the obvious check for large input number p to avoid overflow in the
computation of q. However, we will show that L = 2dlog2 |p|e is satisfied in the presence of underflow. As the
proof will show, rounding tie to even as in the IEEE 754 arithmetic standard is mandatory.

Proof. First assume |p| = 2k for some k ∈ Z. Then the rounding tie to even implies fl(q + p) = fl(q(1 +
eps)) = q, also for p ∈ U, so that fl(|(q + p)− q|) = 0, and L = |p| = 2k = 2dlog2 |p|e for the final result L. So
we may assume that p is not a power of 2, and without loss of generality we assume p > 0. Then

ufp(p) < p < 2ufp(p) ,

and we have to show L = 2ufp(p). Define x := fl(q + p). By Lemma 2.6 the computation of fl(x− q) causes
no rounding error, so that L = fl(q + p) − q. By definition, ufp(q) = eps−1ufp(p) < eps−1p = q, so that
q /∈ U and Lemma 2.2 imply succ(q) = q + 2eps · ufp(q). That means q + eps · ufp(q) is the midpoint of q

and succ(q). Hence rounding to nearest and

q + eps · ufp(q) < q + eps · q = q + p < q + 2ufp(p) = succ(q)

implies fl(q + p) = succ(q), so that L = fl(q + p)− q = 2eps · ufp(q) = 2ufp(p). The theorem is proved. ¤

4. Algorithms and analysis. To ease analysis, we first formulate our summation algorithms with
superscripts to variables to identify the different stages. Of course in the actual implementation vectors are
overwritten.

The main part of the summation algorithm is the error-free transformation of the input vector p(0) into two
floating-point numbers τ1, τ2 representing the high order part of the sum and a vector p(m) of low order
parts. The transformation is error-free, i.e. s :=

∑
p
(0)
i = τ1 + τ2 +

∑
p
(m)
i . The goal is to prove that

fl
(
τ1 + (τ2 + (

∑
p
(m)
i))

)
is a faithfully rounded result of s. The following formulation of the transformation

algorithm is aimed on readability rather than efficiency. In particular we avoid in this first step a check for
zero sum.

ACCURATE FLOATING-POINT SUMMATION, PART I 15

Algorithm 4.1. Preliminary version of transformation of a vector p(0).

function [τ1, τ2, p
(m), σ] = Transform(p(0))

µ = max(|p(0)
i |)

if µ = 0, τ1 = τ2 = p(m) = σ = 0, return, end if
M =

⌈
log2

(
length(p(0)) + 2

)⌉

σ0 = 2M+dlog2(µ)e

t(0) = 0, m = 0
repeat

m = m + 1
[τ (m), p(m)] = ExtractVector(σm−1, p

(m−1))
t(m) = fl(t(m−1) + τ (m))
σm = fl(2Mepsσm−1)

until |t(m)| ≥ fl(22Mepsσm−1) or σm−1 ≤ 1
2eps

−1eta

σ = σm−1

[τ1, τ2] = FastTwoSum(t(m−1), τ (m))

Remark 1. The output parameter σ is not necessary in the following applications of Transform but added
for clarity in the forthcoming proofs.

Remark 2. For clarity we also use for the moment the logarithm in the computation of M and σ0. Later
this will be replaced by Algorithm 3.6 (NextPowerTwo) (see the Matlab code given in the Appendix).

Before we start to prove properties of Algorithm 4.1 (Transform), let’s interpret it. The “repeat-until”-loop
extracts the vector p(m−1) into the sum τ (m) of its leading parts and into the vector p(m) of remaining parts.
Theorem 3.5 ensures that no rounding error occurs in the computation of the sum τ (m). The main property
of the algorithm is to guarantee the error-free transformation

s = t(m−1) + τ (m) +
n∑

i=1

p
(m)
i(4.1)

for all m, in particular for the final one. For that it is mandatory that t(m) = fl(t(m−1) + τ (m)) in the
“repeat-until”-loop is computed without rounding error if the loop is not yet finished because this value is
used in the next loop. We first prove some properties of the algorithm and come to that again in the remarks
after Lemma 4.3. As we will see, the constant 22Meps in the stopping criterion is chosen optimal.

Lemma 4.2. Let τ1, τ2, p
(m), σ be the results of Algorithm 4.1 (Transform) applied to a nonzero vector of

floating-point numbers p
(0)
i , 1 ≤ i ≤ n. Define M := dlog2(n + 2)e and assume 22Meps ≤ 1. Furthermore,

define µ := maxi |p(0)
i | and σ0 = 2M+dlog2 µe. Denote s :=

∑n
i=1 p

(0)
i .

Then Algorithm 4.1 will stop, and

s = t(m−1) + τ (m) +
n∑

i=1

p
(m)
i ,(4.2)

max |p(m)
i | ≤ epsσm−1 , |τ (m)| ≤ (1− 2−M)σm−1 < σm−1 and t(m−1), τ (m) ∈ epsσm−1Z(4.3)

is true for all m between 1 and its final value. Moreover,

τ1 + τ2 = t(m−1) + τ (m) , τ1 = fl(τ1 + τ2) = fl(t(m−1) + τ (m)) = t(m)(4.4)

is satisfied for the final value of m. If σm−1 > 1
2eps

−1eta is satisfied for the final value of m, then

ufp(τ1) ≥ 22Mepsσm−1 .(4.5)

16 S. M. RUMP, T. OGITA AND S. OISHI

Algorithm 4.1 (Transform) requires (4m + 2)n +O(m) flops for m executions of the “repeat-until”-loop.

Remark 1. Note that the computation of σm may be afflicted with a rounding error if σm−1 is in the
underflow range U. However, we will see that this cannot do any harm. The computation of the final value
σ = σm−1 can never be afflicted with a rounding error.

Remark 2. In Lemma 3.4 in Part II of this paper we will show that the assertions of Lemma 4.2 remain
essentially true when replacing the quantity 22Mepsσm−1 in the first inequality of the “until”-condition by
Φσm−1, where Φ denotes a power of 2 between 1 and eps. The chosen factor Φ = 22Meps in Algorithm 4.1
(Transform) is the smallest choice to guarantee faithful rounding, see Remark 2 after Lemma 4.3.

However, it may not be increased beyond σm−1: By the extraction we know by (4.3) the lower bound
epsσm−1 of the unit in the last place of τ (m). So if |t(m)| is small enough, then no rounding error has
occurred in t(m) = fl(t(m−1) + τ (m)). This may be jeopardized if the “until”-condition is too weak, that is if
22Mepsσm−1 is replaced by 2σm−1 .

To see that, consider p(0) = [(8eps)−1 −(8eps)−1 8 1+8eps] in a floating-point format with relative
rounding error unit eps. Then n = 4 so that M = 3, µ = (8eps)−1 and σ0 = eps−1. One verifies that
ExtractVector produces p(1) = [0 0 0 −1+8eps] and t(1) = τ (1) = 10. In the next iteration p(2) is

the zero vector, so that τ (2) =
∑

p
(1)
i = −1 + 8eps and

t(2) = fl(t(1) + τ (2)) = fl(10 + (−1 + 8eps)) = 9 .

Hence

|t(2)| ≥ 8 = σ1

implies that the “repeat-until”-loop in Algorithm 4.1 is finished. If the first inequality in the “until”-
condition would be replaced by |t(m)| ≥ 2σm−1, which is 16 in our example, then there would be a next
loop. However, t(1) + τ (2) = 9 + 8eps is not representable with the relative rounding error unit eps, so
t(2) = fl(t(1) + τ (2)) 6= t(1) + τ (2) would be used and (4.1) is not valid.

Proof of Lemma 4.2. Algorithm Transform will stop because σm is decreased by a factor 2Meps < 1 in
each loop. We proceed by induction to prove (4.2) and (4.3). The initialization in Algorithm 4.1 implies
max |p(0)

i | = µ ≤ 2dlog2(µ)e = 2−Mσ0, so that the assumptions of Theorem 3.5 are satisfied for σ0 and p(0)

as input to ExtractVector. Note this is also true if σ0 ∈ U. This proves (4.3) for m = 1. Furthermore,
s = τ (1) +

∑
p
(1)
i , and (4.2) is also proved for m = 1.

Next assume the “repeat-until”-loop has been executed, denote by m the current value (immediately before
the “until”-statement), and assume that (4.2) and (4.3) are true for the previous index m− 1. The previous
“until”-condition in Algorithm 4.1 implies σm−2 > 1

2eps
−1eta, so σm−2 ≥ eps−1eta because σm−2 is a

power of 2. Hence no rounding error has occurred in the previous computation of 22Mepsσm−2. So the
induction hypothesis and the “until”-condition yield

|t(m−1)| = |fl(t(m−2) + τ (m−1))| < 22Mepsσm−2 ≤ σm−2 ,(4.6)

the latter by the assumption on M . By induction hypothesis, t(m−2), τ (m−1) ∈ epsσm−2Z, so that (2.21)
implies

t(m−1) = fl(t(m−2) + τ (m−1)) = t(m−2) + τ (m−1) ,(4.7)

and the induction hypothesis on (4.2) yields

s = t(m−2) + τ (m−1) +
n∑

i=1

p
(m−1)
i = t(m−1) +

n∑

i=1

p
(m−1)
i .

ACCURATE FLOATING-POINT SUMMATION, PART I 17

By (4.3) we know max |p(m−1)
i | ≤ epsσm−2 = 2−Mσm−1. Hence Theorem 3.5 is applicable and shows∑

p
(m−1)
i = τ (m) +

∑
p
(m)
i , and therefore (4.2) for index m. It also shows (4.3), where t(m−1) ∈ epsσm−1Z

follows by t(m−2), τ (m−1) ∈ epsσm−2Z, (4.7) and (2.11). We proved (4.2) and (4.3). Therefore, for the last
line in Algorithm Transform the assumptions of Lemma 2.6 are satisfied and (4.4) follows.

If σm−1 > 1
2eps

−1eta is satisfied for the final value of m, then σm−1 ≥ eps−1eta. Hence fl(22Mepsσm−1) =
22Mepsσm−1, and the “until”-condition and (4.4) yield |τ1| = |t(m)| ≥ 22Mepsσm−1, which implies (4.5).
The lemma is proved. ¤

The case s = 0 is far from being treated optimal. In this case the preliminary version of Algorithm 4.1
always iterates until σm−1 ≤ 1

2eps
−1eta, and each time a vector p is extracted which may long consist only

of zero components. The case s = 0 is not that rare, for example when checking geometrical predicates. We
will improve on that later. Next we will show how to compute a faithfully rounded result.

Lemma 4.3. Let p be a nonzero vector of n floating-point numbers. Let res be computed as follows:

[τ1, τ2, p
′, σ] = Transform(p)

res = fl(τ1 + (τ2 + (
∑n

i=1 p′i)))
(4.8)

Define M := dlog2(n + 2)e, and assume 22Meps ≤ 1. Furthermore, define µ := maxi |pi| and σ0 =
2M+dlog2 µe.

Then res is a faithful rounding of s :=
∑n

i=1 pi. Moreover,

s = τ1 + τ2 +
n∑

i=1

p′i and max |p′i| ≤ epsσ ,(4.9)

fl(τ1 + τ2) = τ1 , τ1, τ2 ∈ epsσZ and |τ2| ≤ eps · ufp(τ1) ,(4.10)

|s− res| < 2eps(1− 2−M−1)ufp(res) .(4.11)

If σ ≤ 1
2eps

−1eta, then all components of the vector p′ are zero and s = τ1 + τ2.

If res = 0, then s = τ1 = τ2 = 0 and all components of the vector p′ are zero.

If σ > 1
2eps

−1eta, then

ufp(τ1) ≥ 22Mepsσ .(4.12)

The exponent 2M in the first inequality in the “until”-condition is optimal: If it is changed into another
integer, then res need not be a faithful rounding of s.

Remark 1. The proof will be based on Lemma 2.4, where we developed conditions on δ so that r̃ = fl(r) is
a faithful rounding of r + δ. For (4.8) this means r := τ1 + fl(τ2 + (

∑
p′i)) and res = fl(r), so that by (4.2)

δ is the rounding error in the computation of fl(τ2 + (
∑

p′i)). As we will see, the error in the computation
of fl(

∑
p′i), which is estimated by (2.20), is the critical one. In order not to spoil the faithful rounding, the

dominant part r, which is of the order τ1, must be large enough compared to that error. But τ1 is the output
of Algorithm 2.5 (FastTwoSum), so τ1 = fl(t(m−1) + τ (m)) = t(m), and we see that the stopping criterion of
the “repeat-until”-loop in Algorithm 4.1 (Transform) must ensure that |t(m)| is large enough.

Remark 2. To ensure that |t(m)| is large enough for faithful rounding, the chosen lower bound 22Mepsσm−1

in the “until”-condition is the smallest possible choice. To see that, consider the example given in Table
4.1; this also gives further insight into how Algorithm 4.1 and (4.8) in Lemma 4.3 work together. The
computation is performed in IEEE 754 double precision, i.e. eps = 2−53.

The input vector pi := p
(0)
i has 62 elements. We have M = 6, µ = 247 and σ = 253. It follows p

(1)
i = 0

for i = 1, 2, and p
(1)
i = p

(0)
i = pi for i ≥ 3. So t(1) = τ (1) = p1 + p2 = −211 = −22M−1epsσ. With the

18 S. M. RUMP, T. OGITA AND S. OISHI

Table 4.1

Example to show that “until”-condition |t(m)| ≥ fl(22M−1epsσm−1) may not yield a faithfully rounded result

p1 = 247 − 211

p2 = −247

100000000000...00000000000000000000 p3 = 1
11111111111...111111111111111111111 p4 = 1− eps

11111111111...111111111111111111110 p5···6 = 1− 2eps
11111111111...111111111111111111100 p7···10 = 1− 4eps
11111111111...111111111111111111000 p11···18 = 1− 8eps
11111111111...111111111111111110000 p19···34 = 1− 16eps
11111111111...111111111111111100000 p35···61 = 1− 32eps

-1110000000000... p62 = −7 · 2−46

-10000000000000000000000...000000000 τ1 = τ (1) = t(1) = −211

11101011111111111...111111111110010 τ3 := fl(
∑n

i=1 p
(1)
i) = fl(

∑n
i=3 pi)

-1111100010100000000000...000000000001110000 τ1 + τ3

-1111100010100000000000...0000000000 res = fl(τ1 + τ3)
-1111100010100000000000...000000000100000110101 s =

∑62
i=1 pi = −1989− 2101eps

-10010110101
∑62

i=1 p
(1)
i − τ3

original “until”-condition in Algorithm 4.1 (Transform), the loop would continue. If the stopping criterion
is replaced by |t(m)| ≥ fl(22M−1epsσm−1), then the loop is finished. For the remainder term

∑
p
(1)
i , each

floating-point addition fl(αi) := fl(αi−1 + p
(1)
i) where α3 := p

(1)
3 produces a maximal rounding error for

4 ≤ i ≤ 61, and the final p
(1)
62 adds some noise to spoil the faithful rounding.

Remark 3. To minimize the number of loops, the lower bound in the “until”-condition should be as small
as possible, thus Remark 2 shows that the chosen lower bound 22Mepsσm−1 is optimal in that sense, it
cannot be decreased. But with the assumption 22Meps ≤ 1 this lower bound can be as large as σm−1, thus
Remark 2 after Lemma 4.2 shows that it can also not be increased, so that the chosen lower bound is the
only possible power of 2 to guarantee faithful rounding.

Remark 4. In our treatment of huge vector lengths (Part II, Lemma 3.4) we weaken the assumption
22Meps ≤ 1 into 2Meps < 1 which allows much larger dimensions, and we show that the factor in the
“until”-condition may be decreased without jeopardizing the assertions of Lemma 4.2; however, then res as
computed in (4.8) is no longer faithful. But this can be cured, see Algorithm 8.1 and Proposition 8.2 in Part
II of this paper.

Remark 5. By changing the first vector element p1 in the example in Table 4.1 from 247−211 into 247−212,
we can monitor the significant influence of the remainder part

∑
p′i: In this case (4.8) computes res = −4037,

whilst fl(τ1 + τ2) = τ1 = −4096. Note that the rounded-to-nearest result is pred(−4037), one of the rare
cases where it differs from res.

Proof of Lemma 4.3. For the final value of m in Algorithm 4.1 (Transform), p′ = p(m), σ = σm−1, (4.2),
(4.4) and (4.3) yield (4.9). Moreover, (4.4), (4.3), (2.15) and (2.19) imply (4.10). The assertions about the
exponent 2M have already been addressed in Remark 3.

If σ ≤ 1
2eps

−1eta for the final value of m in Algorithm 4.1 (Transform), then (4.9) implies |p′i| < eta, so
all components of the vector p′ must be zero. Hence s = τ1 + τ2, and res = fl(τ1 + τ2) = fl(s), which is of
course a faithful rounding. The other assertions for the case res = 0 follow as well. Moreover, (4.11) follows
by (2.19).

ACCURATE FLOATING-POINT SUMMATION, PART I 19�0 2�M�0 2M�1 �1 eps�0
� (1) p(0)i p(1)iif jt(1)j < 2M�1 t(1)

eps �1�22M�2

p(2)i

eps �2�3

� (2)
�1 = t(2) = (t(1) + � (2)) �2 �3 Æ3� 02 = (�2 + �3)res = (�1 + � 02)

for example

Fig. 4.1. Outline of faithful rounding for m = 2.

Henceforth assume σ > 1
2eps

−1eta. Then (4.5) implies (4.12), and we have to prove that res is a faithful
rounding of the exact result. By assumption, n + 2 ≤ 2M and 22Meps ≤ 1. Next we abbreviate

τ3 = fl(
∑n

i=1 p′i) =
∑n

i=1 p′i − δ3 ,

τ ′2 = fl(τ2 + τ3) = τ2 + τ3 − δ2 ,

res = fl(τ1 + τ ′2) = τ1 + τ ′2 − δ1 .

(4.13)

We will use Lemma 2.4 to prove that res is a faithful rounding of s. By (4.9) and (4.13), s = τ1+τ2+τ3+δ3 =
τ1 + τ ′2 + δ2 + δ3, so

s = r + δ and res = fl(r) for r := τ1 + τ ′2 and δ := δ2 + δ3 .(4.14)

In Figure 4.1 we sketch the possible spread of bits of the individual variables in Algorithm 4.1 (Transform)
for a final value m = 2. In the middle of the figure we define a possible τ1 = t(m), since the following
quantities τ2 etc. depend on that. Note this is a picture for small M , i.e. small dimension n. For larger n, up
to almost

√
eps−1, the error δ3 in the computation of τ3 = fl(

∑
p
(m)
i) can be quite significant (see Remark

5 above), though still just not too large to jeopardize faithful rounding.

By (4.9) and (2.20),

|τ3| = |fl(
n∑

i=1

p′i)| ≤ nepsσ(4.15)

and

|δ3| ≤ 1
2
n(n− 1)eps2σ .(4.16)

For later use we note that (4.10) and (4.12) give

|τ ′2| ≤ (1 + eps)|τ2 + τ3| ≤ (1 + eps)(eps · ufp(τ1) + nepsσ) < |τ1| .(4.17)

20 S. M. RUMP, T. OGITA AND S. OISHI

Now (2.19) and (4.13) yield

|δ2| ≤ eps|τ2 + τ3| ≤ eps2(ufp(τ1) + nσ) .(4.18)

Furthermore, (4.13), (4.10), (4.15) and (4.18) give

|τ1 + τ ′2| ≥ |τ1 + τ2| − |τ2 − τ ′2| = |τ1 + τ2| − |τ3 − δ2|
≥ (1− eps− eps2)|τ1| − (1 + eps)nepsσ ,

so (2.19) and (4.13) imply

|res| ≥ (1− eps)|τ1 + τ ′2| > (1− 2eps)|τ1| − nepsσ

≥ (1− 2eps− 2−M)|τ1| ≥ 5
8 |τ1| ,

(4.19)

a lower bound for |res|, also in the presence of underflow. Now the definition of δ, (4.18) and (4.16) yield

|δ| = |δ2 + δ3| < eps2(ufp(τ1) + nσ +
1
2
n(n− 1)σ) .(4.20)

By n+2 ≤ 2M we have M ≥ 2, so that 22Meps ≤ 1 gives 2−M ≥ 2Meps ≥ 4eps. Furthermore (4.20), (4.12)
and (4.19) imply

2eps−1|δ| < 2eps · ufp(τ1) + n(3 + n− 1)epsσ − nepsσ

≤ 2eps · ufp(τ1) + (2M − 2)2Mepsσ − nepsσ

≤ 2eps · ufp(τ1) + (1− 4eps− 2−M)22Mepsσ − nepsσ

≤ (1− 2eps− 2−M)ufp(τ1)− nepsσ

≤ (1− 2−M)(1− 2eps)ufp(τ1)− (1− 2−M)nepsσ
< (1− 2−M)|res| < |res| .

(4.21)

Using (4.14) and (2.19) we conclude

|s− res| ≤ |fl(r)− r|+ |δ| < eps · ufp(res) +
1
2
eps(1− 2−M)|res| ,

and |res| < 2ufp(res) proves (4.11).

If |τ1| ≥ eps−1eta, then |res| > 1
2eps

−1eta by (4.19). That means res /∈ U, and (4.14), (4.21) and Lemma
2.4 show that res is a faithful rounding of the sum s. This leaves us with the case |τ1| < eps−1eta. In that
case (4.18) and (4.12) yield

|δ2| ≤ eps|τ2 + τ3| ≤ eps2|τ1|+ 2−Meps|τ1| < 1
2
eps|τ1| < eta ,(4.22)

so (4.16) and (4.12) imply

|δ3| ≤ 1
2
n2eps · 2−2M |τ1| ≤ 1

2
eps|τ1| < eta .(4.23)

But δ2 and δ3 are the errors of the sum of floating-point numbers and must be integer multiples of eta, so
(4.22) and (4.23) show that both must be zero. Hence (4.14) implies that res = fl(r) = fl(s) is equal to the
rounded-to-nearest exact result s.

Finally, assume res = 0. To establish a contradiction assume σ > 1
2eps

−1eta. Then the “until”-condition
yields |τ1| = |t(m)| ≥ 22Mepsσ > 0, and (4.19) implies |res| > 0, a contradiction. Therefore σ ≤ 1

2eps
−1eta

and we already proved p′i = 0 for all i. Hence τ1 = fl(τ1 + τ2) = res = 0 and τ2 = fl(τ2) = τ1 = 0. The
lemma is proved. ¤

For the final version of Algorithm 4.1 (Transform) we have to take extra care about zero sums. If s = 0,
then the extracted vector of lower order parts p

(m)
i consists only of zeros at a certain stage and t(m) is zero.

ACCURATE FLOATING-POINT SUMMATION, PART I 21

Hence the preliminary version in Algorithm 4.1 of Transform has to continue the “repeat-until”-loop until
σm−1 is in the underflow range, each time processing the whole zero-vector p

(m)
i . To avoid this we may check

whether the vector p
(m)
i consists only of zeros as in the algorithm proposed by Zielke and Drygalla [50], but

this is time consuming.

A simpler way is to test for t(m) = 0. In that case t(m) = fl(t(m−1) + τ (m)) = 0 = t(m−1) + τ (m) because of
(2.3), so (4.2) implies s =

∑n
i=1 p

(m)
i . Hence, we can apply Algorithm Transform recursively to the extracted

vector p
(m)
i of lower order parts. In the recursive call, the calculation of µ needs one traversal through the

vector. Mostly this just verifies p
(m)
i ≡ 0 and is necessary only once, namely if t(m) = 0.

Algorithm 4.4. Final version of Algorithm 4.1 (Transform) with check for zero.

function [τ1, τ2, p, σ] = Transform(p)
µ = max(|pi|)
if µ = 0, τ1 = τ2 = σ = 0, return, end if
M = NextPowerTwo(length(p) + 2)
σ′ = 2MNextPowerTwo(µ)
t′ = 0
repeat

t = t′; σ = σ′

[τ, p] = ExtractVector(σ, p)
t′ = fl(t + τ)
if t′ = 0, [τ1, τ2, p, σ] = Transform(p); return; end if
σ′ = fl(2Mepsσ)

until |t′| ≥ fl(22Mepsσ) or σ ≤ 1
2eps

−1eta

[τ1, τ2] = FastTwoSum(t, τ)

The final version of Algorithm 4.1 (Transform) including this check for zero is given in Algorithm 4.4.
If t′ = 0 it might be advantageous in to eliminate zero components in the vector p. The final version
of Transform in Algorithm 4.4 omits indices and uses Algorithm 3.6 (NextPowerTwo), so that only basic
floating-point operations are necessary.

Otherwise, except the check for t′ = 0, both Algorithms 4.1 and 4.4 are identical. Note, however, that the
results of Algorithms 4.1 and 4.4 might be different (although always faithful) since in the recursive call of
Transform, µ and σ are computed afresh. Nevertheless, the assertions of Lemmas 4.2 and 4.3 remain true
for both Algorithms 4.1 and 4.4.

Hence we may safely use the same name Transform for both algorithms. The algorithm can still be slightly
improved. For σ just before entering the underflow range one call to ExtractVector may be saved depending
on t′ (see the Matlab code given in the Appendix).

We now state our first algorithm for computing a faithfully rounded result of the sum of a vector of floating-
point numbers.

Algorithm 4.5. Accurate summation with faithful rounding.

function res = AccSum(p)
[τ1, τ2, p

′] = Transform(p)
res = fl(τ1 + (τ2 + (

∑n
i=1 p′i)))

Proposition 4.6. Let p be a vector of n floating-point numbers, define M := dlog2(n + 2)e and assume
22Meps ≤ 1. Let res be the result of Algorithm 4.5 (AccSum) applied to p.

22 S. M. RUMP, T. OGITA AND S. OISHI

Then res is a faithful rounding of s :=
∑n

i=1 pi.

Remark. Algorithm 4.5 (AccSum) is identical to the piece of code we analyzed in Lemma 4.3, only the
output parameter σ in Transform, which is unnecessary here, is omitted.

Proof. For zero input vector p, Algorithm Transform implies τ1 = τ2 = p′i = res = 0 for all i. For nonzero
input vector p, the assumptions of Lemma 4.3 are satisfied, and the assertion follows. ¤

Corollary 4.7. Under the assumption of Proposition 4.6 the computed result res of Algorithm 4.5 (AccSum)
is equal to the exact result s =

∑
pi if s is a floating-point number, or if res ∈ U, i.e.

s ∈ F or res ∈ U ⇒ res = s .(4.24)

In particular res = 0 if and only if s = 0, and

sign(res) = sign(s) .

Proof. The sum s of floating-point numbers satisfies always s ∈ etaZ, so the definition (2.25) of faithful
rounding proves (4.24) and the corollary. ¤

Remark 1. The exact determination of the sign of a sum by Algorithm 4.5 is critical in the evaluation of
geometrical predicates [20, 4, 45, 9, 27, 8, 14]. Rewriting a dot product as a sum by splitting products in
two parts (Dekker’s and Veltkamp’s [12] algorithms Split and TwoProduct, see also [37]), we can determine
the exact sign of a dot product as well, which in turn decides whether a point is exactly on some plane, or
on which side it is. An improved version of AccSum for sign determination also for huge vector lengths is
given in Part II of the paper.

Remark 2. We showed that the result of Algorithm 4.5 is always a faithful rounding of the exact sum.
Computational evidence suggests that the cases, where the result of AccSum is not rounded to nearest, are
very rare. In several billion tests we never encountered such a case.
However, we can construct examples with faithful but not rounding to nearest. Consider p = [1 eps eps2].
Then AccSum(p) produces τ1 = 1, τ2 = 0 and p′ = [0 eps eps2], and res = 1. This is because IEEE 754
rounds tie to even, so fl(1 + eps) = 1.

Changing the strict into an “almost always” rounded to nearest offers quite a reward, namely the compu-
tational effort of Algorithm 4.5 (AccSum) depends solely on the logarithm of the condition number of the
sum: only the more difficult the problem, the more computing time must be spent. The maximum number
of iterations m can be estimated as follows. The condition number of summation for

∑
pi 6= 0 is defined [19]

by

cond
(∑

pi

)
:= lim

ε→0
sup

{∣∣∣∣
∑

p̃i −
∑

pi

ε
∑

pi

∣∣∣∣ : |p̃− p| ≤ ε|p|
}

,

where absolute value and comparison of vectors is to be understood componentwise. Obviously

cond
(∑

pi

)
=

∑ |pi|
|∑ pi| .(4.25)

The following theorem estimates the maximal number m of iterations needed in AccSum depending on the
number of elements n and the condition number.

Theorem 4.8. Assume Algorithm 4.5 (AccSum) is applied to a vector of floating-point numbers pi, 1 ≤ i ≤ n,
with nonzero sum s. Define M := dlog2(n + 2)e and assume 22Meps ≤ 1. Then the following is true. If

cond
(∑

pi

)
≤ (1− 2−M)2−2M−1

[
2−Meps−1

]m
,(4.26)

ACCURATE FLOATING-POINT SUMMATION, PART I 23

Table 4.2

Minimum treatable condition numbers by Algorithm 4.5 in IEEE 754 double precision

n m = 1 m = 2 m = 3 m = 4 m = 5
100 2.1 · 109 1.5 · 1023 1.1 · 1037 7.4 · 1050 5.2 · 1064

1000 4.2 · 106 3.7 · 1019 3.2 · 1032 2.9 · 1045 2.5 · 1058

10000 1.0 · 103 5.6 · 1014 3.1 · 1026 1.7 · 1038 9.4 · 1049

105 1.4 · 1011 9.4 · 1021 6.5 · 1032 4.5 · 1043

106 3.4 · 107 2.9 · 1017 2.5 · 1027 2.1 · 1037

107 5.1 · 102 2.7 · 1011 1.5 · 1020 7.9 · 1028

then Algorithm 4.4 (Transform) called by Algorithm 4.5 (AccSum) stops after at most m executions of the
“repeat-until”-loop. If the “repeat-until”-loop is executed m times and absolute value and comparison is
counted as one flop, then Algorithm 4.5 (AccSum) needs (4m + 3)n +O(m) flops.

Proof. For the analysis we use the (except the check for zero) identical Algorithm 4.1 for Transform. Then
p
(0)
i := pi, and its initialization implies

n + 2 ≤ 2M , max
i
|pi| = µ ,

1
2
σ0 < 2Mµ ≤ σ0 and σk = ϕkσ0(4.27)

for ϕ := 2Meps and 0 ≤ k ≤ m.

To establish a contradiction assume Algorithm 4.1 is not finished after m executions of the “repeat-until”-
loop. Then the “until”-condition, which is not satisfied for the value m, implies σm−1 > 1

2eps
−1eta so that

fl(22Mepsσm−1) = 22Mepsσm−1, and

|t(m)| < 22Mepsσm−1 = 2Mσm .(4.28)

Since the “repeat-until”-loop is to be executed again, we use (4.2) to conclude

s = t(m) +
∑

p
(m)
i(4.29)

as in (4.7) in the proof of Lemma 4.2. Denote the condition number by C. Then (4.25) and (4.27) yield
|s| = C−1

∑ |pi| ≥ µC−1. Combining this with (4.29), (4.3), (4.27), (4.26) and using (1−2−M)−1 > 1+2−M

implies

|t(m)| ≥ |s| − |
∑

p
(m)
i | ≥ µC−1 − 2Mepsσm−1

= µC−1 − ϕmσ0 > (2−M−1C−1 − ϕm)σ0

≥ (
2−M−122M+1(1 + 2−M)− 1

)
ϕmσ0 = 2Mϕmσ0

= 2Mσm ,

a contradiction to (4.28). Up to order 1, the calculation of µ requires 2n flops, ExtractVector requires 4n

and the computation of res requires n flops. The theorem is proved. ¤

For IEEE 754 double precision, Theorem 4.8 basically means that at least for condition numbers up to

cond
(∑

pi

)
. 2m(53−M)−2M−1

Algorithm 4.5 (AccSum) computes a faithfully rounded result in at most m executions of the “repeat-until”-
loop. In Table 4.2 we show the lower bound by Theorem 4.8 for the condition number which can be treated
for different values of n and m, where treatable means to produce a faithfully rounded result.

Conversely, we can use Theorem 4.8 to compute for given m and condition number eps−1 the minimum
length n of a vector for which a faithfully rounded result of its sum is computed. The value eps−1 is the

24 S. M. RUMP, T. OGITA AND S. OISHI

Table 4.3

Minimum treatable length n for condition number eps−1 in IEEE 754 double precision

m = 2 m = 3 m = 4
4094 1.0 · 106 6.7 · 107

Table 4.4

Floating-point operations needed for different dimension and condition number

n cond AccSum Sum2 XBLAS

1000 106 7n 7n 10n

1000 1016 11n 7n 10n

106 1016 15n 7n 10n

condition number for which we cannot expect a single correct digit by traditional recursive summation. The
value 6.7 · 107 in Table 4.3 corresponds to the maximum value of n satisfying n + 2 ≤ 2M and 22Meps ≤ 1.
The table shows that for condition number up to eps−1 and vectors with up to a million elements never more
than 3 iterations are needed. Algorithms for even larger values n > 6.7 · 107 will be presented in Section 8
in Part II of this paper.

Also AccSum compares favorably to other algorithms. Consider the XBLAS summation algorithm BLAS_dsum_x

[2]. Note that there are at least three implementations, the reference implementation published in [32] re-
quiring 20n flops, the function ddadd in the ddfun90 package [5] by David Bailey requiring 11n flops, and
BLAS_dsum_x taken from [2] requiring 10n flops. We compare against the fastest version BLAS_dsum_x taken
from XBLAS requiring 10n flops.

An alternative to XBLAS is Algorithm 4.4 (Sum2) in [37]. The results of both algorithms are of the same
quality, namely as if computed in quadruple precision. That means, for condition numbers up to eps−1 we
can expect a result accurate to the last bit. In Table 4.4 the required floating-point operations are displayed
for different vector lengths and condition numbers. Note that Algorithm 4.5 (AccSum) always computes a
faithfully rounded result, independent of the condition number.

In practice the computing times compare even more favorable than anticipated by Table 4.4 for our Algorithm
4.5 (AccSum) as shown in Section 5. This is because AccSum allows a better instruction-level parallelism as
analyzed by Langlois [29]. The measured computing times displayed in the next section suggest that AccSum
seems to be faster than the XBLAS summation algorithm by a factor 2 to 5, although being of much better
quality.

5. Computational results. In the following we give some computational results on different architec-
tures and using different compilers. All programming and measurement was done by the second author.

All algorithms are tested in three different environments, namely Pentium 4, Itanium 2 and Athlon 64, see
Table 5.1. We carefully choose compiler options to achieve best possible results, see Table 5.1.

We faced no problems except for Pentium 4 and the Intel Visual Fortran 9.1 compiler, where the code
optimization/simplification is overdone by the compiler. A typical example is the first line q = fl ((σ + p)− σ)
in Algorithm 3.2 (ExtractScalar), which is optimized into q = p. This can, of course, be avoided by setting
appropriate compiler options; however, this may slow down the whole computation. In this specific case
the second author suggested a simple trick to overcome this by using q = fl (|σ + p| − σ) instead. This does
not change the intended result since |p| ≤ σ is assumed in the analysis (Lemma 3.3), it avoids unintended
compiler optimization, and it does not slow down the computation. For the other algorithms to be tested we
had, however, to use the compile option /Op for Pentium 4. This ensures the consistency of IEEE standard
754 floating-point arithmetic. The compile options for the different algorithms are summarized in Table 5.2.

ACCURATE FLOATING-POINT SUMMATION, PART I 25

Table 5.1

Testing environments

CPU, Cache sizes Compiler, Compile options
I) Intel Pentium 4 (2.53GHz) Intel Visual Fortran 9.1

L2: 512KB /O3 /QaxN /QxN [/Op, see Table 5.2]
II) Intel Itanium 2 (1.4GHz) Intel Fortran 9.0

L2: 256KB, L3: 3MB -O3

III) AMD Athlon 64 (2.2GHz) GNU gfortran 4.1.1
L2: 512KB -O3 -fomit-frame-pointer -march=athlon64 -funroll-loops

Table 5.2

Compile options for Pentium 4, Intel Visual Fortran 9.1

Algorithm Necessity of compile option /Op

DSum No
Sum2 Yes, for TwoSum
XBLAS Yes, for TwoSum and FastTwoSum

Priest Yes, for FastTwoSum
Malcolm, LongAccu Yes, for Split
AccSum Basically, no

Our algorithms are based on extractions, the split of a floating-point number with respect to σ, a power of
2 corresponding to a certain exponent. Since this operation is in the inner loop of all our algorithms, we
payed special attention to this and designed Algorithm 3.4 (ExtractVector) to be as fast as possible. This
algorithm requires 3 floating-point operations and has no branch.

Another possibility to extract bits of a floating-point number p is proper scaling and rounding to integer as
used by Zielke and Drygalla [50] (line 13 in Algorithm 3.1). Some compilers offer two possibilities of such
rounding, namely chopping and rounding to the nearest integer. In the Table 5.3 the columns “Dint” and
“Dnint” refer to those roundings, respectively. Another possibility of rounding a floating-point number is
the assignment to a variable of type integer. One obstacle might be that an integer format with sufficient
precision is not available. This approach is referred to by “Int=Dble”.

As can be seen from Table 5.3, our Algorithm 3.2 (ExtractScalar), the computing time of which is normed
to 1, is usually faster than the other possibilities. Our summation algorithm directly benefits from this.
There is a certain drop in the ratio for large dimension which is related to the cache size, so not too much
attention must be paid to the last lines of the Table 5.3 for huge dimension.

Next we tested our summation algorithm. Test examples for huge condition numbers larger than eps−1 were
generated by Algorithm 6.1 in [37], where a method to generate a vector whose summation is arbitrarily
ill-conditioned is described. Dot products are transformed into sums by Dekker’s and Veltkamp’s Algorithms
Split and TwoProduct, see [37].

First we compare AccSum with the ordinary, recursive summation DSum, with Sum2 taken from [37] and the
XBLAS summation algorithm BLAS_dsum_x from [2] (called XBLAS in the following tables). The latter two
deliver a result as if calculated in approximately twice the working precision. As has been mentioned at the
end of the previous section, BLAS_dsum_x requires 10n flops and is the fastest version of XBLAS summation.
In the first set of examples we test sums with condition number 1016 for various vector lengths. This is the
largest condition number for which Sum2 and XBLAS produce an accurate result. Note that the comparison
is not really fair since AccSum produces a faithfully rounded result for any condition number. We compare
to recursive summation DSum, the time of which is normed to 1. This is only for reference; for condition

26 S. M. RUMP, T. OGITA AND S. OISHI

Table 5.3

Measured computing times for extraction, for all environments time of ExtractScalar normed to 1

CPU Intel Pentium 4 (2.53GHz) Intel Itanium 2 (1.4GHz) AMD Athlon 64 (2.2GHz)
Compiler Intel Visual Fortran 9.1 Intel Fortran 9.0 GNU gfortran 4.1.1

n Dint Dnint Int=Dble Dint Dnint Int=Dble Dint Dnint Int=Dble

100 5.6 6.8 9.8 1.4 2.1 1.2 6.8 9.0 1.9
400 5.9 6.8 10.4 2.1 3.4 1.6 6.3 9.8 1.9

1,600 5.7 7.0 10.2 2.1 3.4 1.7 7.3 9.9 1.9
6,400 5.5 6.8 9.8 2.1 3.4 1.6 7.3 10.0 1.9

25,600 5.5 6.8 9.7 2.2 3.5 1.7 6.5 9.1 1.9
102,400 1.1 1.2 1.5 2.1 2.8 1.4 3.3 5.0 1.3
409,600 1.0 1.1 1.4 1.9 2.0 1.0 2.8 4.2 1.2

1,638,400 1.0 1.1 1.3 1.9 2.0 1.0 3.2 4.6 1.2

Table 5.4

Measured computing times for cond = 1016, for all environments time of DSum normed to 1

CPU Intel Pentium 4 (2.53GHz) Intel Itanium 2 (1.4GHz) AMD Athlon 64 (2.2GHz)
Compiler Intel Visual Fortran 9.1 Intel Fortran 9.0 GNU gfortran 4.1.1

n Sum2 XBLAS AccSum Sum2 XBLAS AccSum Sum2 XBLAS AccSum

100 24.1 75.9 14.1 2.9 17.3 7.8 2.0 4.8 2.8
400 26.9 81.9 13.1 4.7 31.6 10.7 3.1 7.6 4.1

1,600 20.0 57.8 9.6 7.3 50.5 15.8 3.1 7.7 4.1
6,400 20.0 57.8 9.6 7.8 54.5 16.5 3.1 7.7 4.2

25,600 20.4 59.1 13.8 7.9 55.6 21.5 3.1 7.7 5.7
102,400 2.3 7.5 7.9 7.3 50.0 25.6 2.3 5.7 8.0
409,600 2.4 7.3 7.8 2.1 13.0 12.9 2.3 5.5 8.0

1,638,400 2.4 7.6 8.0 2.1 13.1 12.8 2.3 5.5 8.1

number 1016 we cannot expect DSum to produce a single correct digit.

The results are displayed in Table 5.4. AccSum achieves on the different architectures a remarkable factor
of about 10, 17 or 5 compared to recursive summation. We also see that AccSum is significantly faster
than XBLAS, on Pentium 4 even faster than Sum2. As has been mentioned earlier, this is due to a better
instruction-level parallelism of AccSum and Sum2 as analyzed by Langlois [29]. We also observe a certain
drop in the ratio for larger dimensions, at least for Pentium 4 and Itanium 2 due to cache misses. However,
this is hardly visible on the Athlon architecture.

A closer look reveals that the code produced by the GNU gfortran 4.1.1 compiler on Athlon can be signif-
icantly improved by unrolling loops. On Pentium 4 and Itanium 2 we did not observe a difference when
unrolling, the compilers seem to be smart enough to take care of that. The computational results for Athlon
64 are displayed in Table 5.5, where DSumU, Sum2U, XBLASU refer to the unrolled versions, respectively. Note
that the time for DSumU is normed to 1. Collecting 4 terms at a time proved to be a good choice. We observe
not much difference for Sum2, XBLAS and AccSum when unrolling, but a significant difference for recursive
summation DSum. Now the drop in the time-ratio due to cache misses is visible as before.

A typical application of accurate summation algorithms is the computation of the residual Ax̃ − b for an
approximate solution x̃ of a linear system Ax = b by transforming the dot products error-free into sums. If
x̃ is computed by some standard algorithm like Gaussian elimination, the condition number of the residual
is always 1016. This is true independent of the condition number of the linear system. This is the reason

ACCURATE FLOATING-POINT SUMMATION, PART I 27

Table 5.5

Measured computing times for cond = 1016, time of DSumU normed to 1, on AMD Athlon 64, GNU gfortran 4.1.1

n DSum Sum2 Sum2U XBLAS XBLASU AccSum AccSumU

100 4.8 9.3 8.2 22.7 22.6 13.4 13.4
400 3.6 11.2 9.9 27.7 27.7 15.0 15.1

1,600 3.9 12.1 10.6 30.0 30.0 16.0 16.0
6,400 4.0 12.4 10.9 30.8 30.8 16.8 16.5

25,600 2.0 6.2 5.4 15.4 15.4 11.4 11.3
102,400 1.0 2.3 2.0 5.7 5.6 7.9 7.9
409,600 1.0 2.3 2.0 5.5 5.5 8.0 8.0

1,638,400 1.0 2.3 2.0 5.5 5.5 8.1 8.1

Table 5.6

Measured computing times for cond = 1032, for all environments time of DSum normed to 1

CPU Intel Pentium 4 (2.53GHz) Intel Itanium 2 (1.4GHz)
Compiler Intel Visual Fortran 9.1 Intel Fortran 9.0

n Sum2 XBLAS AccSum Sum2 XBLAS AccSum

100 24.1 75.9 15.8 3.0 17.5 9.6
400 26.9 81.9 15.9 5.9 39.4 16.3

1,600 20.0 57.8 14.0 7.3 50.6 20.0
6,400 20.0 57.8 14.0 7.9 54.6 24.4

25,600 20.4 59.1 15.1 7.9 63.0 25.6
102,400 2.3 7.5 13.1 5.4 36.3 33.2
409,600 2.4 7.3 11.2 2.1 13.3 19.0

1,638,400 2.4 7.6 11.1 3.9 13.1 18.7

why the previous examples are chosen with condition number 1016. The performance for condition number
1032 is displayed in Table 5.6 for Intel Pentium 4 and Itanium 2 architectures. Again the computing time
of DSum is normed to 1. The results for the AMD Athlon 64 processor for condition number 1032 behave,
compared to the other architectures, similar to those for condition number 1016.

The computing times of DSum, Sum2 and XBLAS do not depend on the condition number, so the results for
these algorithms coincide with those of Table 5.4. The computing time of AccSum adapts to the condition
number. For condition number 1032 we observe an increase in computing time for AccSum of up to 50%
compared to condition number 1016. Note, however, that all results by AccSum are accurate to the last bit
whereas all results by Sum2 and XBLAS are completely incorrect for condition number 1032.

The good performance of AccSum becomes transparent when looking at the MFlops-rate. In Figure 5.1 the
MFlops are displayed for the different algorithms on Itanium 2, the left figure corresponding to the previously
displayed results. For the other architectures the picture looks even more favorably for AccSum. Note that
the Itanium 2 can perform 2 additions per cycle so that the peak performance is 2.8GFlops.

It is interesting as well to look at the percentage of peak performance achieved by the different algorithms.
These are displayed in Tables 5.7 and 5.8 for condition numbers 1016 and 1032 for Pentium 4 and Itanium 2,
respectively. The result for the Athlon 64 processor is similar to that for Itanium 2. Note that the memory
bandwidth3 of the Itanium 2 and Athlon 64 architectures is approximately 3GByte/sec, while that of Pentium
4 is around 1GByte/sec. In Table 5.7 we observe for DSum gradually decreasing performance down to around
half of peak with a sharp drop for a dimension above 105, which is out-of-cache data. The performance of

3It influences the performance of the architectures for out-of-cache data.

28 S. M. RUMP, T. OGITA AND S. OISHI

10
2

10
3

10
4

10
5

10
6

0

500

1000

1500

2000

2500

3000

3500

4000

dimension (n)

M
F

lo
p
s

10
2

10
3

10
4

10
5

10
6

0

500

1000

1500

2000

2500

3000

3500

4000

dimension (n)

M
F

lo
p
s

DSum
Sum2
XBLAS
AccSum

DSum
Priest
Malcolm
LongAccu
AccSum

Fig. 5.1. Measured MFlops on Itanium 2 (1.4GHz), Intel Fortran 9.0, cond = 1016

Table 5.7

Percentage of peak performance Pentium 4 (2.53 GHz) for condition numbers 1016 and 1032

cond = 1016 cond = 1032

n DSum Sum2 XBLAS AccSum DSum Sum2 XBLAS AccSum

100 74.4 % 21.6 % 9.8 % 58.0 % 74.4 % 21.6 % 9.8 % 66.6 %
400 79.1 % 20.6 % 9.7 % 66.3 % 79.1 % 20.6 % 9.7 % 82.5 %

1,600 55.0 % 19.2 % 9.5 % 63.2 % 55.0 % 19.2 % 9.5 % 89.0 %
6,400 55.0 % 19.2 % 9.5 % 63.2 % 55.0 % 19.2 % 9.5 % 89.0 %

25,600 56.2 % 19.2 % 9.5 % 61.2 % 56.2 % 19.2 % 9.5 % 81.5 %
102,400 7.0 % 21.1 % 9.3 % 13.3 % 7.0 % 21.1 % 9.3 % 13.7 %
409,600 6.9 % 20.6 % 9.4 % 13.3 % 6.9 % 20.6 % 9.4 % 13.7 %

1,638,400 7.0 % 20.7 % 9.3 % 13.1 % 7.0 % 20.7 % 9.3 % 13.7 %

Sum2 and XBLAS is constantly around 20% and below 10%, respectively, due to data dependencies. AccSum is
much more efficient for in-cache data. For Itanium 2 we observe in Table 5.8 for DSum increasing performance
up to peak, again with a sharp drop for out-of-cache data. For Sum2 performance increases starting at a
higher level but not reaching peak performance and with a not so sharp drop. The performance of XBLAS
is constantly below 20% due to data dependencies, whereas AccSum is less efficient than Sum2. Remember
that for condition number 1032 results of Sum2 and XBLAS are completely incorrect whereas AccSum computes
results accurate to the last bit.

Next we compare to competing algorithms, namely Priest’s doubly compensated summation [40, 41], Mal-
colm’s [34] and the long accumulator [28]. The comparison is also not exactly fair because Priest’s algorithm
produces a result accurate to 2 units in the last place, so almost faithful rounding, whereas Malcolm’s and
the long accumulator can easily be used to compute a rounded-to-nearest result. Note that the needed
intermediate memory for the latter two approaches depend on the exponent range (in fact, is proportional
to), whereas AccSum does not.

We first display the results for Pentium 4 and Itanium 2 in Table 5.9. Obviously AccSum compares favorably
to its competitors. The ratio in computing time compared to DSum is stable and around 10 to 20 for all
vector lengths. Note, however, the tremendous gain for Malcolm’s algorithm with increasing dimension, a
factor 17 or almost 5 from vector length 100 to 1.6 million. It seems that for huge vector lengths we basically

ACCURATE FLOATING-POINT SUMMATION, PART I 29

Table 5.8

Percentage of peak performance Itanium 2 (1.4 GHz) for condition numbers 1016 and 1032

cond = 1016 cond = 1032

n DSum Sum2 XBLAS AccSum DSum Sum2 XBLAS AccSum

100 30.4 % 71.9 % 17.3 % 38.4 % 30.4 % 71.9 % 17.3 % 47.5 %
400 69.7 % 82.6 % 17.7 % 50.5 % 69.7 % 82.6 % 17.7 % 63.9 %

1,600 89.9 % 85.9 % 17.8 % 56.0 % 89.9 % 85.9 % 17.8 % 72.7 %
6,400 97.0 % 86.5 % 17.8 % 57.1 % 97.0 % 86.5 % 17.8 % 75.2 %

25,600 97.5 % 86.5 % 15.5 % 61.4 % 97.5 % 86.5 % 15.5 % 73.3 %
102,400 64.5 % 84.2 % 17.8 % 48.3 % 64.5 % 84.2 % 17.8 % 52.6 %
409,600 23.6 % 77.5 % 17.7 % 27.0 % 23.6 % 77.5 % 17.7 % 28.6 %

1,638,400 23.2 % 77.7 % 17.7 % 27.2 % 23.2 % 77.7 % 17.7 % 28.6 %

Table 5.9

Measured computing times for cond = 1016, for both environments time of DSum normed to 1

CPU Intel Pentium 4 (2.53GHz) Intel Itanium 2 (1.4GHz)
Compiler Intel Visual Fortran 9.1 Intel Fortran Compiler 9.0

n Priest Malcolm LongAccu AccSum Priest Malcolm LongAccu AccSum

100 187.1 175.9 711.2 14.1 129.7 49.0 241.5 7.8
400 311.9 148.1 761.9 13.1 317.4 43.6 448.1 10.7

1,600 305.7 97.8 540.9 9.6 609.5 50.9 717.6 15.8
6,400 345.7 96.5 540.9 9.6 797.8 49.3 767.5 16.5

25,600 407.1 98.7 554.2 13.8 957.0 49.4 790.2 21.5
102,400 93.5 11.2 67.2 7.9 1056.2 43.8 711.3 25.6
409,600 159.9 10.4 66.3 7.8 411.2 11.4 184.8 12.9

1,638,400 216.5 10.6 67.4 8.0 547.9 11.4 185.4 12.8

measure cache misses rather than performance of the algorithms. Huge vector lengths, however, may become
important for matrix-vector multiplication.

Again we observe a certain drop for huge vector lengths due to cache misses. As before comparison on
Athlon should be made to the unrolled version DSumU of recursive summation. The results are summarized
in Table 5.10. Again observe the tremendous speedup of Malcolm’s algorithm with increasing vector length.
The corresponding MFlops are displayed in the right graph of Figure 5.1.

The “small” condition number 1016 is favorite for our Algorithm AccSum because few extractions are neces-
sary, whereas the computing times for Priest’s, Malcolm’s and the long accumulator are almost independent
of the condition number. We compare the algorithms for fixed vector length 1000 and huge condition num-
bers, where the computing time for AccSum is normed to 1. The relative computing times on the three
architectures are displayed in Figure 5.2 and the left of Figure 5.3. Obviously AccSum shows a good perfor-
mance on all platforms. In the right of Figure 5.3 the MFlop rate of the algorithms is displayed for Itanium
2. For reference, the MFlop rate for recursive summation DSum is shown as well. On the Itanium 2 both
DSum and AccSum range not far from peak performance. For larger condition number performance increases
because more operations are performed on the data. Otherwise only Malcolm’s summation can reach a
reasonable MFlop rate. For the other architectures the picture looks similar.

Finally that we tried to find examples where the result of Algorithm 4.5 (AccSum) is not rounded to nearest.
We treated dimensions from 10 to 105 and condition numbers as above. In particular we used dimensions
n = 2M − 2. Fortunately, we have Algorithm NearSum to be presented in Part II of this paper for reference.

30 S. M. RUMP, T. OGITA AND S. OISHI

Table 5.10

Measured computing times for cond = 1016, time of DSumU normed to 1, AMD Athlon 64, GNU gfortran 4.1.1

n DSum Priest Malcolm LongAccu AccSum

100 4.8 106.3 66.4 269.3 13.4
400 3.6 182.5 40.6 327.0 15.0

1,600 3.9 231.4 32.8 353.1 16.0
6,400 4.0 280.7 31.2 362.2 16.8

25,600 2.0 171.1 15.4 181.2 11.4
102,400 1.0 96.7 5.6 66.0 7.9
409,600 1.0 140.9 5.5 64.3 8.0

1,638,400 1.0 190.4 5.5 64.2 8.1

10
0

10
10

10
20

10
30

10
40

10
50

10
60

10
70

0

10

20

30

40

50

60

70

80

90

100

cond

R
a
ti

o
o
f

co
m

p
u
ti

n
g

ti
m

e

Pentium 4 (2.53GHz), Intel Visual Fortran 9.1

Priest
Malcolm
LongAccu
AccSum

10
0

10
10

10
20

10
30

10
40

10
50

10
60

10
70

0

5

10

15

20

25

30

35

cond

R
a
ti

o
o
f

co
m

p
u
ti

n
g

ti
m

e

Athlon 64 (2.2GHz), GNU gfortran 4.1.1

Priest
Malcolm
LongAccu
AccSum

Fig. 5.2. Measured computing times for huge condition numbers, for both environments time of AccSum normed to 1

It is not so easy to find a long precision package delivering results always rounded to nearest; especially we
observed problems with rounding tie to even. In several billion test cases we did not find one example with
the result of AccSum not being the nearest floating-point number to the exact result. However, there are
constructed examples, see Remark 5 following Lemma 4.3 and Remark 2 following Corollary 4.7.

6. Appendix. Following is executable Matlab code for Algorithm 4.5 including acceleration for zero
sums and elimination of zero summands for that case (see also http://www.ti3.tu-harburg.de/rump).
Moreover, the algorithms ExtractVector and FastTwoSum are expanded. Note that the Matlab function
nextpow2(f) returns the smallest k such that 2k ≥ |f |, while Algorithm 3.6 (NextPowerTwo) returns 2k.
Accordingly, the variable Ms refers to 2M in Algorithm 4.5 (AccSum). Note that the check for overflow (which
is easily done by scaling) and the check 22Meps ≤ 1 is omitted.

Algorithm 6.1. Executable Matlab code for Algorithm 4.5 (AccSum) including check for zero sum.

function res = AccSum(p)

% For given vector p, result res is the exact sum of p_i faithfully rounded

% provided no overflow occurs. Acceleration for zero sums is included.

%

n = length(p); % initialization

mu = max(abs(p)); % abs(p_i) <= mu

if (n==0) | (mu==0) % no or only zero summands

res = 0;

ACCURATE FLOATING-POINT SUMMATION, PART I 31

10
0

10
10

10
20

10
30

10
40

10
50

10
60

10
70

0

5

10

15

20

25

30

35

40

45

50

cond

R
a
ti

o
o
f

co
m

p
u
ti

n
g

ti
m

e
Itanium 2 (1.4GHz), Intel Fortran 9.0

Priest
Malcolm
LongAccu
AccSum

10
0

10
10

10
20

10
30

10
40

10
50

10
60

10
70

0

500

1000

1500

2000

2500

cond

M
F

lo
p
s

Itanium 2 (1.4GHz), Intel Fortran 9.0

DSum
Priest
Malcolm
LongAccu
AccSum

Fig. 5.3. Measured computing times (left, time of AccSum normed to 1) and MFlops (right) on Itanium 2

return

end

Ms = NextPowerTwo(n+2); % n+2 <= 2^M = Ms

sigma = Ms*NextPowerTwo(mu); % first extraction unit

phi = 2^(-53)*Ms; % factor to decrease sigma

factor = 2^(-53)*Ms*Ms; % factor for sigma check

%

t = 0;

while 1

q = (sigma + p) - sigma; % [tau,p] = ExtractVector(sigma,p);

tau = sum(q); % sum of leading terms

p = p - q; % remaining terms

tau1 = t + tau; % new approximation

if (abs(tau1)>=factor*sigma) | (sigma<=realmin)

tau2 = tau - (tau1 - t); % [tau1,tau2] = FastTwoSum(t,tau)

res = tau1 + (tau2 + sum(p)); % faithfully rounded final result

return

end

t = tau1; % sum t+tau exact

if t==0 % accelerate case sum(p)=0

res = AccSum(p); % sum of remainder part

return

end

sigma = phi*sigma; % new extraction unit

end

7. Summary. We presented a summation algorithm provably computing a faithfully rounded result.
The algorithm uses only ordinary floating-point addition, subtraction and multiplication, no branches in the
inner loops and no special operations. We showed that our summation Algorithm 4.5 (AccSum) is faster,
sometimes much faster than other approaches. For all algorithms presented in Part I and II of this paper
and in [37] we put a Matlab reference code on http://www.ti3.tu-harburg.de/rump .

The algorithms are based on so-called error-free transformations. We hope to see these computationally and

32 S. M. RUMP, T. OGITA AND S. OISHI

mathematically highly interesting operations in future computer architectures and floating-point standards.

Acknowledgement. The authors heartily wish to thank the two anonymous referees for their thorough
reading and most valuable and inspiring comments. Our special thanks to Yozo Hida from Berkeley for his
many thoughtful and valuable comments. Moreover we wish to thank many colleagues for their constructive
comments, among them Stef Graillat, Philippe Langlois and Paul Zimmermann. The first author wishes to
express his thankfulness that the paper could be written during stays at Waseda University supported by
the Grant-in-Aid for Specially Promoted Research from the MEXT, Japan. The first author also wishes to
thank his students of the winter term 2004/05, of the summer terms 2005 and 2006 for their patience and
constructive comments. The second author would like to express his sincere thanks to Prof. Yasunori Ushiro
for his stimulating discussions.

REFERENCES

[1] ANSI/IEEE Std 754-1985: IEEE Standard for Binary Floating-Point Arithmetic, New York, 1985.

[2] XBLAS: A Reference Implementation for Extended and Mixed Precision BLAS. http://crd.lbl.gov/~xiaoye/XBLAS/ .

[3] I. J. Anderson, A distillation algorithm for floating-point summation, SIAM J. Sci. Comput., 20 (1999), pp. 1797–1806.

[4] F. Avnaim, J.-D. Boissonnat, O. Devillers, F. P. Preparata, and M. Yvinec, Evaluating signs of determinants using

single-precision arithmetic, Algorithmica, 17 (1997), pp. 111–132.

[5] D. H. Bailey, A Fortran-90 double-double precision library. http://crd.lbl.gov/~dhbailey/mpdist/ .

[6] D. H. Bailey, H. Yozo, X. S. Li, and B. Thompson, ARPREC: An Arbitrary Precision Computation Package, Tech.

Report Paper LBNL-53651, Lawrence Berkeley National Laboratory, 2002.

[7] G. Bohlender, Floating-point computation of functions with maximum accuracy, IEEE Trans. Comput., C-26 (1977),

pp. 621–632.

[8] H. Brönnimann, C. Burnikel, and S. Pion, Interval arithmetic yields efficient dynamic filters for computational geom-

etry, Discrete Appl. Math., 109 (2001), pp. 25–47.

[9] H. Brönnimann and M. Yvinec, Efficient exact evaluation of signs of determinants, Algorithmica, 27 (2000), pp. 21–56.

[10] K. L. Clarkson, Safe and effective determinant evaluation, in Proceedings of the 33rd Annual Symposium on Foundations

of Computer Science, Pittsburgh, PA, IEEE Computer Society Press, 1992, pp. 387–395.

[11] M. Daumas and D. W. Matula, Validated roundings of dot products by sticky accumulation, IEEE Trans. Comput., 46

(1997), pp. 623–629.

[12] T. J. Dekker, A floating-point technique for extending the available precision, Numer. Math., 18 (1971), pp. 224–242.

[13] J. Demmel and Y. Hida, Accurate and efficient floating point summation, SIAM J. Sci. Comput., 25 (2003), pp. 1214–

1248.

[14] J. Demmel and Y. Hida, Fast and accurate floating point summation with application to computational geometry,

Numerical Algorithms, 37 (2004), pp. 101–112.

[15] S. Graillat, P. Langlois, and N. Louvet, Compensated Horner Scheme, Tech. Report RR2005-02, Laboratoire LP2A,

University of Perpignan, 2005.

[16] J. R. Hauser, Handling floating-point exceptions in numeric programs, ACM Trans. Program. Lang. Syst., 18 (1996),

pp. 139–174.

[17] C. Hecker, Let’s get to the (floating) point, Game Developer, 2 (1996), pp. 19–24.

[18] N. J. Higham, The accuracy of floating point summation, SIAM J. Sci. Comput., 14 (1993), pp. 783–799.

[19] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 2nd ed., 2002.

[20] C. M. Hoffmann, Robustness in geometric computations, Journal of Computing and Information Science in Engineering,

1 (2001), pp. 143–156.

[21] M. Jankowski, A. Smoktunowicz, and H. Woźniakowski, A note on floating-point summation of very many terms,

Electron. Informationsverarb. Kybernet., 19 (1983), pp. 435–440.

[22] M. Jankowski and H. Woźniakowski, The accurate solution of certain continuous problems using only sigle precision

arithmetic, BIT, 25 (1985), pp. 635–651.

[23] W. Kahan, A survey of error analysis, in Proceedings of the IFIP Congress, Information Processing 71, North-Holland,

Amsterdam, 1972, pp. 1214–1239.

[24] W. Kahan, Implementation of Algorithms (lecture notes by W. S. Haugeland and D. Hough), Tech. Report 20, Depart-

ment of Computer Science, University of California, Berkeley, CA, 1973.

[25] A. KieÃlbasziński, Summation algorithm with corrections and some of its applications, Math. Stos, 1 (1973), pp. 22–41.

[26] D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, vol. 2, Addison-Wesley, Reading, MA,

1969.

[27] S. Krishnan, M. Foskey, T. Culver, J. Keyser, and D. Manocha, PRECISE: Efficient multiprecision evaluation of

ACCURATE FLOATING-POINT SUMMATION, PART I 33

algebraic roots and predicates for reliable geometric computation, in Proceedings of the 17th Annual Symposium on

Computational Geometry, New York, NY, 2001, ACM Press, pp. 274–283.

[28] U. Kulisch and W. L. Miranker, Arithmetic operations in interval spaces, Computing, Suppl. 2 (1980), pp. 51–67.

[29] P. Langlois, Accurate Algorithms in Floating Point Arithmetic, Invited talk at the 12th GAMM–IMACS International

Symposion on Scientific Computing, Computer Arithmetic and Validated Numerics, Duisburg, 26–29 September,

2006.

[30] P. Langlois and N. Louvet, Solving Triangular Systems More Accurately and Efficiently, Tech. Report RR2005-02,

Laboratoire LP2A, University of Perpignan, 2005.

[31] H. Leuprecht and W. Oberaigner, Parallel algorithms for the rounding exact summation of floating point numbers,

Computing, 28 (1982), pp. 89–104.

[32] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y. Kang, A. Kapur,

M. C. Martin, B. J. Thompson, T. Tung, and D. Yoo, Design, implementation and testing of extended and mixed

precision BLAS, ACM Trans. Math. Softw., 28 (2002), pp. 152–205.

[33] S. Linnainmaa, Software for doubled-precision floating point computations, ACM Trans. Math. Softw., 7 (1981), pp. 272–

283.

[34] M. Malcolm, On accurate floating-point summation, Comm. ACM, 14 (1971), pp. 731–736.

[35] O. Møller, Quasi double precision in floating-point arithmetic, BIT, 5 (1965), pp. 37–50.

[36] A. Neumaier, Rundungsfehleranalyse einiger Verfahren zur Summation endlicher Summen, Z. Angew. Math. Mech., 54

(1974), pp. 39–51.

[37] T. Ogita, S. M. Rump, and S. Oishi, Accurate sum and dot product, SIAM J. Sci. Comput., 26 (2005), pp. 1955–1988.

[38] K. Ozaki, T. Ogita, S. M. Rump, and S. Oishi, Fast and robust algorithm for geometric predicates using floating-point

arithmetic, Transactions of the Japan Society for Industrial and Applied Mathematics, 16 (2006), pp. 553–562.

[39] M. Pichat, Correction d’une somme en arithmétique à virgule flottante, Numer. Math., 19 (1972), pp. 400–406.

[40] D. M. Priest, Algorithms for arbitrary precision floating point arithmetic, in Proceedings of the 10th Symposium on

Computer Arithmetic, P. Kornerup and D. W. Matula, eds., Grenoble, 1991, IEEE Press, pp. 132–145.

[41] D. M. Priest, On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of Accurate Computations,

Ph.D. thesis, Mathematics Department, University of California at Berkeley, CA, 1992.

[42] D. R. Ross, Reducing truncation errors using cascading accumulators, Comm. ACM, 8 (1965), pp. 32–33.

[43] S. M. Rump, INTLAB - INTerval LABoratory, in Developments in Reliable Computing, T. Csendes, ed., Kluwer Academic

Publishers, Dordrecht, 1999, pp. 77–104.

[44] S. M. Rump, T. Ogita, and S. Oishi, Accurate Floating-point Summation Part II: Sign, K-fold Faithful and Rounding to

Nearest, Tech. Report 07.2, Faculty of Information and Communication Science, Hamburg University of Technology,

2007. http://www.ti3.tu-harburg.de/rump .

[45] S. Schirra, Precision and robustness in geometric computations, in Algorithmic Foundations of Geographic Information

Systems, M. van Kreveld, J. Nievergelt, T. Roos, and P. Widmayer, eds., Lecture Notes in Computer Science 1340,

Springer-Verlag, Berlin, 1997, pp. 255–287.

[46] J. R. Shewchuk, Adaptive precision floating-point arithmetic and fast robust geometric predicates, Discrete Comput.

Geom., 18 (1997), pp. 305–363.

[47] J. M. Wolfe, Reducing truncation errors by programming, Comm. ACM, 7 (1964), pp. 355–356.

[48] Y.-K. Zhu and W. Hayes, Fast, guaranteed-accurate sums of many floating-point numbers, in Proceedings of the 7th

Conference on Real Numbers and Computers, G. Hanrot and P. Zimmermann, eds., 2006, pp. 11–22.

[49] Y.-K. Zhu, J.-H. Yong, and G.-Q. Zheng, A new distillation algorithm for floating-point summation, SIAM J. Sci.

Comput., 26 (2005), pp. 2066–2078.

[50] G. Zielke and V. Drygalla, Genaue Lösung Linearer Gleichungssysteme, GAMM Mitt. Ges. Angew. Math. Mech., 26

(2003), pp.7–107.

