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ACCURATE FLOATING-POINT SUMMATION PART II:
SIGN, K-FOLD FAITHFUL AND ROUNDING TO NEAREST ∗

SIEGFRIED M. RUMP † , TAKESHI OGITA ‡ , AND SHIN’ICHI OISHI §

Abstract. In this Part II of this paper we first refine the analysis of error-free vector transformations presented in Part I.

Based on that we present an algorithm for calculating the rounded-to-nearest result of s :=
∑

pi for a given vector of floating-

point numbers pi, as well as algorithms for directed rounding. A special algorithm for computing the sign of s is given, also

working for huge dimensions. Assume a floating-point working precision with relative rounding error unit eps. We define and

investigate a K-fold faithful rounding of a real number r. Basically the result is stored in a vector Resν of K non-overlapping

floating-point numbers such that
∑

Resν approximates r with relative accuracy epsK , and replacing ResK by its floating-point

neighbors in
∑

Resν forms a lower and upper bound for r. For a given vector of floating-point numbers with exact sum s, we

present an algorithm for calculating a K-fold faithful rounding of s using solely the working precision. Furthermore, an algorithm

for calculating a faithfully rounded result of the sum of a vector of huge dimension is presented. Our algorithms are fast in

terms of measured computing time because they allow good instruction-level parallelism, they neither require special operations

such as access to mantissa or exponent, they contain no branch in the inner loop, nor do they require some extra precision: The

only operations used are standard floating-point addition, subtraction and multiplication in one working precision, for example

double precision. Certain constants used in the algorithms are proved to be optimal.

Key words. maximally accurate summation, faithful rounding, rounding to nearest, directed rounding, K-fold accuracy,

sign, error-free transformations, distillation, high accuracy, XBLAS, error analysis
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1. Introduction, notation and basic facts. We will present fast algorithms to compute approxi-
mations of high quality of the sum of a vector pi of floating-point numbers. Since sums of floating-point
numbers are ubiquitous in scientific computations, there is a vast amount of literature to that; excellent
surveys can be found in [9, 14].

In Part I [22] of this paper we gave a fast algorithm to compute a faithfully rounded result of
∑

pi. Our
methods are based on error-free transformations. For example, Knuth [11] gave an algorithm (cf. Part I,
Algorithm 2.1) transforming the sum a + b of two floating-point numbers into a sum x + y, where x is the
usual floating-point approximation of the sum and y comprises of the exact error. Surprisingly, x and y

can be calculated using only 6 ordinary floating-point operations. Such error-free transformations receive
interest in many areas [1, 8, 13, 14, 17, 18, 19, 20, 24, 25, 26, 27].

More background, an overview of existing methods and more details are given in Part I [22] of this paper.

This Part II of our paper extends the results of Part I [22] in various ways, and it is organized as follows.
For the often delicate estimations we developed a framework for the analysis in Part I. Those techniques and
main results are summarized in Section 2. Next we redefine the error-free vector transformation in Algorithm

∗This research was partially supported by Grant-in-Aid for Specially Promoted Research (No. 17002012: Establishment of

Verified Numerical Computation) from the Ministry of Education, Science, Sports and Culture of Japan.
†Institute for Reliable Computing, Hamburg University of Technology, Schwarzenbergstraße 95, Hamburg 21071, Germany,

and Visiting Professor at Waseda University, Faculty of Science and Engineering, 3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555,

Japan (rump@tu-harburg.de).
‡Department of Mathematics, Tokyo Woman’s Christian University, 2–6–1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan,

and Visiting Associate Professor at Waseda University, Faculty of Science and Engineering, 3–4–1 Okubo, Shinjuku-ku, Tokyo

169–8555, Japan (ogita@lab.twcu.ac.jp).
§Department of Computer Science, Faculty of Science and Engineering, Waseda University, 3–4–1 Okubo, Shinjuku-ku,

Tokyo 169–8555, Japan (oishi@waseda.jp).

1



2 S. M. RUMP, T. OGITA AND S. OISHI

3.3 (Transform) and refine the analysis of Part I. This is the key to all algorithms in Part II. We especially
allow for huge vector lengths up to about eps−1, and give as a first example in Section 4 an algorithm to
compute the sign of

∑
pi. We show that the constant in the stopping criterion is best possible.

In Part I we developed an algorithm to compute a faithful rounding res of the sum s of a vector of floating-
point numbers. This means that there is no floating-point number between res and s. Especially, if s is
itself a floating-point number or is in the underflow range, then res = s. In the following Section 5 of this
paper we define and investigate K-fold faithful rounding. Suppose a floating-point working precision with
relative rounding error unit eps to be given. Then K-fold faithful rounding of s :=

∑
pi means basically that

a vector Resν of K floating-point numbers is computed such that
∑

Resν is an approximation of relative
accuracy epsK , and ResK is a faithful rounding of s − ∑K−1

ν=1 Resν . This implies that replacing ResK by
its two floating-point neighbors in

∑
Resν produces a lower and upper bound for s. After developing the

theoretical background in Section 5, we present a fast algorithm for computing a K-fold faithful rounding
Resν of

∑
pi in Section 6. Moreover we show that the sequence Resν is non-overlapping.

In the following Section 7 we develop a rounding-to-nearest algorithm for s =
∑

pi. This is the ultimate
accuracy of an approximation of s by a single floating-point number; however, it necessarily comes with
a burden: To compute a faithful rounding of s, it suffices to know s up to some error margin, whereas
the rounded-to-nearest result may ultimately require to know s exactly, namely if s is the midpoint of two
adjacent floating-point numbers.

Our Algorithm 4.5 (AccSum) presented in Part I for computing a faithfully rounded result of
∑

pi has the
charming property that the computing time is proportional to the logarithm of the condition number: The
more difficult the problem is, the more computing time is needed. This is also true for our rounding-to-nearest
algorithm, however, the “difficulty” depends on the nearness of the exact result

∑
pi to the midpoint of two

adjacent floating-point numbers. In Section 7 we also give algorithms for computing
∑

pi with directed
rounding.

For our Algorithm 4.5 (AccSum) presented in Part I the vector length was limited to about
√
eps−1. In Section

8 we extend the range of applicability to vector lengths near eps−1. We conclude the paper with compu-
tational results on a Pentium 4, Itanium 2 and Athlon 64 processor. For all algorithms presented in Part I
and II of this paper and in [18] we put a Matlab reference code on http://www.ti3.tu-harburg.de/rump .

As in [18] and [22], all theorems, error analysis and proofs are due to the first author of the present paper.

2. Notation and basic facts. We use the notation and a number of results of Part I [22] of this paper.
For convenience, some of the main results are summarized in the following, for more details, cf. [22].

The set of floating-point numbers is denoted by F, and U denotes the set of subnormal floating-point numbers
together with zero and the two normalized floating-point numbers of smallest nonzero magnitude. The
relative rounding error unit, the distance from 1.0 to the next larger floating-point number, is denoted by
eps, and the underflow unit by eta, that is the smallest positive (subnormal) floating-point number. For
IEEE 754 double precision we have eps = 2−53 and eta = 2−1074. Then 1

2eps
−1eta is the smallest positive

normalized floating-point number, and for f ∈ F we have

f ∈ U ⇔ 0 ≤ |f | ≤ 1
2
eps−1eta .(2.1)

Note that for f ∈ U, f ± eta are the floating-point neighbors of f . We denote by fl(·) the result of a
floating-point computation, where all operations within the parentheses are executed in working precision.
If the order of execution is ambiguous and is crucial, we make it unique by using parentheses. An expression
like fl

( ∑
pi

)
implies inherently that summation may be performed in any order. We assume floating-point

operations in rounding to nearest corresponding to the IEEE 754 arithmetic standard [10].
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f � := ufp(f) 2 eps �
Fig. 2.1. The unit in the first place and unit in the last place of a normalized floating-point number

In Part I we introduced the “unit in the first place” (ufp) or leading bit of a real number by

0 6= r ∈ R ⇒ ufp(r) := 2blog2 |r|c ,(2.2)

where we set ufp(0) := 0. This gives a convenient way to characterize the bits of a normalized floating-point
number f : They range between the leading bit ufp(f) and the unit in the last place 2eps · ufp(f). The
situation is depicted in Figure 2.1.

In our analysis we will frequently view a floating-number as a scaled integer. For σ = 2k, k ∈ Z, we use the
set epsσZ, which can be interpreted as a set of fixed point numbers with smallest positive number epsσ.
Of course, F ⊆ etaZ. These two concepts, the unit in the first place ufp(·) together with f ∈ F ⇒ f ∈
2eps · ufp(f)Z proved to be very useful in the often delicate analysis of our algorithms. Note that (2.2) is
independent of some floating-point format and it applies to real numbers as well: ufp(r) is the value of the
first nonzero bit in the binary representation of r. It follows

0 6= r ∈ R ⇒ ufp(r) ≤ |r| < 2ufp(r)(2.3)

σ′ = 2m, m ∈ Z and σ′ ≥ σ ⇒ epsσ′Z ⊆ epsσZ(2.4)

r ∈ epsσZ, |r| ≤ σ and epsσ ≥ eta ⇒ r ∈ F(2.5)

a, b ∈ F ∩ epsσZ and δ := fl(a + b)− (a + b) ⇒ fl(a + b), a + b, δ ∈ epsσZ(2.6)

neps ≤ 1, ai ∈ F and |ai| ≤ σ ⇒ |fl(
∑n

i=1 ai)| ≤ nσ and
|fl(

∑n
i=1 ai)− (

∑n
i=1 ai)| ≤ n(n−1)

2 epsσ
(2.7)

a, b ∈ F, a 6= 0 ⇒ fl(a + b) ∈ eps · ufp(a)Z ,(2.8)

see (2.9) through (2.20) in Part I of this paper. The fundamental error bound for floating-point addition is

f = fl(a + b) ⇒ f = a + b + δ with |δ| ≤ eps · ufp(a + b) ≤ eps · ufp(f) ≤ eps|f | ,(2.9)

cf. (2.19) in part I. Note that this improves the standard error bound fl(a + b) = (a + b)(1 + ε) for a, b ∈ F
and |ε| ≤ eps by up to a factor 2. In many estimations we desperately need this factor. Also note that (2.9)
is also true in the underflow range, in fact addition (and subtraction) is exact if fl(a± b) ∈ U.

Next we note a useful sufficient criterion [cf. (2.21) in Part I] to decide that no error occurred in the sum of
two floating-point numbers. For a, b ∈ F and σ = 2k, k ∈ Z,

a, b ∈ epsσZ and fl(|a + b|) < σ ⇒ fl(a + b) = a + b and
a, b ∈ epsσZ and |a + b| ≤ σ ⇒ fl(a + b) = a + b .

(2.10)

We define the floating-point predecessor and successor of a real number r with min{f : f ∈ F} < r < max{f :
f ∈ F} by

pred(r) := max{f ∈ F : f < r} & succ(r) := min{f ∈ F : r < f} .

Using the ufp concept, the predecessor and successor of a floating-point number can be characterized as
follows. Note that 0 6= |f | = ufp(f) is equivalent to f being a power of 2.

Lemma 2.1. Let a floating-point number 0 6= f ∈ F be given. Then

f /∈ U and |f | 6= ufp(f) ⇒ pred(f) = f − 2eps · ufp(f) and f + 2eps · ufp(f) = succ(f) ,
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f /∈ U and f = ufp(f) ⇒ pred(f) = (1− eps)f and (1 + 2eps)f = succ(f) ,

f /∈ U and f = −ufp(f) ⇒ pred(f) = (1 + 2eps)f and (1− eps)f = succ(f) ,

f ∈ U ⇒ pred(f) = f − eta and f + eta = succ(f) .

For f /∈ U,

f − 2eps · ufp(f) ≤ pred(f) < succ(f) ≤ f + 2eps · ufp(f) .(2.11)

A main concept of both parts of this paper is faithful rounding [5, 20, 4]. A floating-point number f is
called a faithful rounding of a real number r if there is no other floating-point number between f and r. It
follows that f = r in case r ∈ F.

Definition 2.2. A floating-point number f ∈ F is called a faithful rounding of a real number r ∈ R if

pred(f) < r < succ(f) .(2.12)

We denote this by f ∈ 2(r). For r ∈ F this implies f = r.

The following sufficient criterion was given in Lemma 2.4 in Part I. Note that for the computation of a
faithful rounding of a real number r we only need to know r up to a certain error margin. The rounded-to-
nearest fl(r) computed by Algorithm 7.4, however, ultimately requires to know r precisely, namely if r is the
midpoint between two adjacent floating-point numbers.

Lemma 2.3. Let r, δ ∈ R and r̃ := fl(r). If r̃ /∈ U suppose 2|δ| < eps|r̃|, and if r̃ ∈ U suppose |δ| < 1
2eta.

Then r̃ ∈ 2(r + δ), that means r̃ is a faithful rounding of r + δ.

A main principle of both parts of this paper is the error-free transformation of the sum of floating-point
numbers. For the sum of two floating-point numbers Knuth [11] gave an algorithm transforming a+b = x+y

for general a, b ∈ F with x = fl(a + b). It requires 6 floating-point operations. The following faster version
by Dekker [5] applies if a, b are somehow sorted.

Algorithm 2.4. Compensated summation of two floating-point numbers.

function [x, y] = FastTwoSum(a, b)
x = fl(a + b)
q = fl(x− a)
y = fl(b− q)

In Part I, Lemma 2.6 we analyzed the algorithm as follows.

Lemma 2.5. Let a, b be floating-point numbers with a ∈ 2eps · ufp(b)Z. Let x, y be the results produced by
Algorithm 2.4 (FastTwoSum) applied to a, b. Then

x + y = a + b , x = fl(a + b) and |y| ≤ eps · ufp(a + b) ≤ eps · ufp(x) .(2.13)

Furthermore,

q = fl(x− a) = x− a and y = fl(b− q) = b− q ,(2.14)

that is the floating-point subtractions x− a and b− q are exact.

3. Error-free transformations. The main principle of the error-free vector transformation in Part I
is the extraction of a vector into a sum of higher order parts and a vector of lower order parts. The splitting
is chosen so that the higher order parts add without error.



ACCURATE FLOATING-POINT SUMMATION, PART II 5

Algorithm 3.1. Error-free vector transformation extracting high order part.

function [τ, p′] = ExtractVector(σ, p)
τ = 0
for i = 1 : n

qi = fl((σ + pi)− σ)
p′i = fl(pi − qi)
τ = fl(τ + qi)

end for

The following was proved in Part I, Theorem 3.4.

Theorem 3.2. Let τ and p′ be the results of Algorithm 3.1 (ExtractVector) applied to σ ∈ F and a vector
of floating-point numbers pi, 1 ≤ i ≤ n. Assume σ = 2k ∈ F for some k ∈ Z, n < 2M for some M ∈ N and
|pi| ≤ 2−Mσ for all i. Then

n∑

i=1

pi = τ +
n∑

i=1

p′i , max |p′i| ≤ epsσ , |τ | ≤ (1− 2−M )σ < σ and τ ∈ epsσZ .(3.1)

Based on that we derived in Part I a transformation of a vector pi into an approximation of its sum and a
remainder part, namely

∑
pi = τ1 + τ2 +

∑
p′i, an error-free transformation. Now we refine this algorithm

and its analysis by introducing an offset, by a parameterized stopping criterion and by allowing for huge
vector lengths.

Algorithm 3.3. Transformation of a vector p(0) plus offset % (depending on parameter Φ).

function [τ1, τ2, p
(m), σ,M ] = Transform(p(0), %)

µ = max(|p(0)
i |)

if µ = 0, τ1 = %, τ2 = p(m) = σ = 0, return, end if
M =

⌈
log2

(
length(p(0)) + 2

)⌉

σ0 = 2M+dlog2(µ)e

t(0) = %, m = 0
repeat

m = m + 1
[τ (m), p(m)] = ExtractVector(σm−1, p

(m−1))
t(m) = fl(t(m−1) + τ (m))
σm = fl(2Mepsσm−1)

until |t(m)| ≥ fl(Φσm−1) or σm−1 ≤ 1
2eps

−1eta % Parameter Φ to be specified
σ = σm−1

[τ1, τ2] = FastTwoSum(t(m−1), τ (m))

Note that this is a preliminary version of Transform with all intermediate results uniquely identified using
indices to ease readability and analysis. The original Algorithm 4.1 (Transform) in Part I was rewritten
into the final version Algorithm 4.4 by omitting indices, overwriting results and an additional check for zero.
Completely similarly Algorithm 3.3 is to be rewritten in an actual implementation.

Lemma 3.4. Let τ1, τ2, p
(m), σ be the results of Algorithm 3.3 (Transform) applied to a nonzero vector of

floating-point numbers p
(0)
i , 1 ≤ i ≤ n, and let % ∈ F. Define M := dlog2(n + 2)e and assume 2Meps < 1.

Furthermore, assume that % ∈ epsσ0Z is satisfied for µ := maxi |p(0)
i | and σ0 = 2M+dlog2 µe. Assume the

parameter Φ in the “until”-condition to be a power of 2 satisfying eps ≤ Φ ≤ 1. Denote s :=
∑n

i=1 p
(0)
i .

Then Algorithm 3.3 will stop, and

s + % = t(m−1) + τ (m) +
n∑

i=1

p
(m)
i(3.2)
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max |p(m)
i | ≤ epsσm−1 , |τ (m)| ≤ (1− 2−M )σm−1 < σm−1 and t(m−1), τ (m) ∈ epsσm−1Z(3.3)

is true for all m between 1 and its final value. Moreover,

τ1 + τ2 = t(m−1) + τ (m) , |τ2| ≤ eps · ufp(τ1) , τ1 = fl(τ1 + τ2) = fl(t(m−1) + τ (m)) = t(m)(3.4)

is satisfied for the final value of m. If σm−1 ≤ 1
2eps

−1eta is satisfied for the final value of m, then the vector
p(m) is entirely zero. If σm−1 > 1

2eps
−1eta is satisfied for the final value of m, then

ufp(τ1) ≥ Φσm−1 .(3.5)

Remark. The assumption % ∈ epsσ0Z is necessary to ensure that ufp(%) is not too small: If Algorithm
Transform does not stop for m = 1, then we will show that no rounding error occurs in the computation of
t(1) = fl(t(0) + τ (1)). Without the assumption on % = t(0) this need not be true if 0 < % ≤ eps|τ (1)|.

Proof of Lemma 3.4. For % = 0, Algorithm Transform is identical to Algorithm 4.1 in Part I [22] of this
paper with the parameter Φ = 22Meps. Algorithm 4.1 in Part I is analyzed in Lemma 4.2 in Part I with the
stronger assumption 22Meps ≤ 1.

Carefully going through the proof of Lemma 4.2 in Part I we identify the necessary changes to prove Lemma
3.4. We see that 2Meps < 1 suffices to guarantee that Algorithm 3.3 (Transform) stops. The assumption
% ∈ epsσ0Z assures that (3.3) is satisfied for m = 1, and t(0) = % gives (3.2) for m = 1. In the induction
step we used σm−2 ≥ eps−1eta to verify that no rounding error has occurred in the previous computation
of 22Mepsσm−2 in the “until”-condition. This is also true for Φσm−2 under our assumption eps ≤ Φ ≤ 1.
Next we proved

|t(m−1)| < σm−2(3.6)

in (4.6) in Part I to assure that no rounding error occurs in the computation of t(m−1) = fl(t(m−2) + τ (m−1)).
But (3.6) follows by the previous “until”-condition on |t(m−1)| and eps ≤ Φ ≤ 1. This proves (3.2) and (3.3)
for all values of m, and (3.4) follows as well. If σm−1 ≤ 1

2eps
−1eta is satisfied for the final value of m, then

(3.3) implies |p(m)
i | ≤ 1

2eta, hence p
(m)
i = 0 for all i. Finally, eps ≤ Φ ≤ 1 assures again that no rounding

error occurred in the computation of Φσm−1 if σm−1 > 1
2eps

−1eta and (3.5) follows. The lemma is proved.
¤

A special application of Algorithm 3.3 (Transform) with % 6= 0 might be the following. Suppose it is known
that one component, p1 say, of a vector p is much larger in magnitude than the others. Then the call
Transform(p(2 : n), p1), in Matlab notation, may reduce the number of loops since then σ0 only depends
on the smaller components p2, · · · , pn and not on p1. We will use this in Section 6, where we will present
Algorithm 6.4 (AccSumK) to compute a faithfully rounded result of K-fold accuracy.

The following lemma adapts some parts of the analysis of the original Algorithm 4.1 (Transform) in Part I
and includes the offset %. Note that the code in (3.7) without offset is the same as for Algorithm 4.5 (AccSum)
in Part I.

Lemma 3.5. Let p be a nonzero vector of n floating-point numbers and % ∈ F. Let res be computed as
follows:

[τ1, τ2, p
′, σ] = Transform(p, %) % Parameter Φ replaced by 22Meps

res = fl(τ1 + (τ2 + (
∑n

i=1 p′i)))
(3.7)

Define M := dlog2(n + 2)e, and assume 22Meps ≤ 1. Furthermore, assume that % ∈ epsσ0Z is satisfied for
µ := maxi |pi| and σ0 = 2M+dlog2 µe.
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Then res is a faithful rounding of
∑n

i=1 pi + % =: s + %. Moreover,

s + % = τ1 + τ2 +
n∑

i=1

p′i and max |p′i| ≤ epsσ ,(3.8)

fl(τ1 + τ2) = τ1 , τ1, τ2 ∈ epsσZ and |τ2| ≤ eps · ufp(τ1) ,(3.9)

|s + %− res| < 2eps(1− 2−M−1)ufp(res) .(3.10)

If σ ≤ 1
2eps

−1eta, then all components of the vector p′ are zero and s + % = τ1 + τ2.

If res = 0, then s + % = τ1 = τ2 = 0 and all components of the vector p′ are zero.

If σ > 1
2eps

−1eta, then

ufp(τ1) ≥ 22Mepsσ .(3.11)

If the exponent 2M in the parameter Φ is changed into another integer, then res need not be a faithful
rounding of s + %. Abbreviate

τ3 = fl(
∑n

i=1 p′i) =
∑n

i=1 p′i − δ3 ,

τ ′2 = fl(τ2 + τ3) = τ2 + τ3 − δ2 ,

res = fl(τ1 + τ ′2) = τ1 + τ ′2 − δ1 .

(3.12)

Then

s + % = r + δ and res = fl(r) for r := τ1 + τ ′2 and δ := δ2 + δ3 .(3.13)

If σ > 1
2eps

−1eta, then

|τ3| = |fl(
n∑

i=1

p′i)| ≤ nepsσ ,(3.14)

|τ ′2| ≤ (1 + eps)|τ2 + τ3| ≤ (1 + eps)(eps · ufp(τ1) + nepsσ) < |τ1| ,(3.15)

|res| ≥ 5
8
|τ1| ,(3.16)

2eps−1|δ| < (1− 2−M )|res| < |res| .(3.17)

Proof. The only difference to the assumptions of Lemma 4.3 in Part I of this paper is the additional
parameter % in Transform. The proof and the assertions of Lemma 4.3 in Part I, however, are based on
Lemma 4.2 in Part I and the error-free transformation s = τ1 + τ2 +

∑
p′i. With the offset % this changes

into s + % = τ1 + τ2 +
∑

p′i as by Lemma 3.4. Carefully going through the proof of Lemma 4.3 in Part
I we see that basically s has to be replaced by s + %, and the assertions (3.8) through (3.11) follow. The
abbreviations (3.12) are the same as in (4.13) in the proof of Lemma 4.3 in Part I, implying (3.13). The
remaining assertions (3.14) through (3.17) repeat corresponding assertions in the proof of Lemma 4.3 in Part
I for the case σ > 1

2eps
−1eta. ¤

4. The sign of a sum. In Remark 2 following Lemma 4.3 in Part I of this paper we saw that the
exponent in the lower bound 22Mepsσm−1 in the “until”-condition cannot be decreased without jeopardizing
faithful rounding. In the refined version of Algorithm 3.3 (Transform) we saw in Lemma 3.4 that most
properties remain valid when replacing the parameter Φ by a factor as small as eps, i.e. the lower bound in
the “until”-condition reads epsσm−1.

The smaller Φ, the less iterations are necessary. If only the sign of the sum
∑

pi is to be computed and
not necessarily a faithful rounding, then Φ may be decreased below 22Meps. Next we will show that if Φ is
replaced by 2Meps, then the sign of res as computed by Algorithm 4.5 (AccSum) in Part I is still equal to
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the sign of the sum
∑

pi, and this not only for n bounded by 22Meps ≤ 1 but only requiring 2Meps < 1.
Moreover, 2Meps is the smallest possible choice for Φ.

Algorithm 4.1. Rigorous computation of sign(
∑

pi), also for huge lengths.

function S = AccSign(p)
[τ1, τ2, p

′, σ] = Transform(p, 0) % Parameter Φ replaced by 2Meps

S = sign(τ1)

Theorem 4.2. Let S be the result of Algorithm 4.1 (AccSign) applied to a vector of floating-point numbers
pi, 1 ≤ i ≤ n. Assume that 2Meps < 1 is satisfied for M := dlog2(n + 2)e.

Then Algorithm AccSign will stop, and

S = sign
( n∑

i=1

pi

)
.(4.1)

The parameter Φ cannot be replaced by a power of 2 smaller than 2Meps without jeopardizing (4.1). The
algorithm needs (4m + 2)n +O(m) flops for m “repeat-until”-loops in Transform.

Proof. Define s :=
∑n

i=1 pi. Without loss of generality assume the vector p to be nonzero. The assumptions
of Lemma 3.4 are satisfied, and (3.2), (3.4) and % = 0 imply

s = τ1 + τ2 +
n∑

i=1

p′i .(4.2)

If σ ≤ 1
2eps

−1eta, then p′ is entirely zero and s = τ1 + τ2, so that τ1 = fl(τ1 + τ2) = fl(s).

If σ > 1
2eps

−1eta, then τ1 = t(m) and the “until”-condition in Algorithm 3.3 (Transform) imply |τ1| ≥
2Mepsσ, so that |τ2| ≤ eps|τ1| and (3.3) give

|τ2|+ |
n∑

i=1

p′i| ≤ eps|τ1|+ (2M − 2)epsσ < (1− eps)|τ1|

and sign(s) = sign(τ1) by (4.2).

To see that Φ is optimal, consider

p(0) = [c c c c − 1
8eps

−1 −4 + 4eps] ∈ F6 with c :=
1
32

eps−1 + 1(4.3)

in a floating-point format with relative rounding error unit eps ≤ 1
64 . Then M = 3, µ = 1

8eps
−1 and

σ = eps−1. Hence rounding tie to even implies p(1) = [1 1 1 1 0 4eps] and τ (1) = 4 · 1
32eps

−1 −
1
8eps

−1 − 4 = −4 in the notation of Algorithm 3.3 (Transform). With the parameter Φ = 2M−1eps the
first inequality in the “until”-condition would read |t(m)| ≥ 4, so the “repeat-until”-loop would be finished.
However, t(0) = 0, so τ1 = −4 but s = +4eps. ¤

Note that for the example in (4.3) with the parameter Φ = 2M−1eps in AccSign it would also not help to
compute res as in Algorithm 4.5 (AccSum) in Part I because τ2 = 0 and fl(

∑
p
(1)
i ) = 4 by rounding tie to

even, so that res = 0 but s = 4eps.

The improved version for sign determination is applicable in single precision for dimensions up to 8.3 · 106,
and in double precision for dimensions up to 4.5 · 1015.
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5. K-fold faithful rounding. Sometimes the precision of the given floating-point format may not be
sufficient. One possibility for improvement is the use of multiple precision arithmetic such as in [2, 3, 7, 6].
Frequently such packages support a special long precision data type.

An alternative may be to put together a long number by pieces of floating-point numbers; for example
XBLAS uses this to simulate quadruple precision [14]. For two and more pieces this technique was used in
[21] to compute highly accurate inclusions of the solution of systems of linear equations. Later this technique
was also called staggered correction.

To gain as much accuracy as possible, the pieces may be required to be non-overlapping, i.e. their bit
representations should have no bit in common [19, 20]. Another approach is to assume that two numbers
may only overlap in bits where those of the first one are zero [24].

In this section we define K-fold faithful rounding. Recall that by Definition 2.2 a floating-point number
f ∈ F is called a faithful rounding of a real number r ∈ R if

pred(f) < r < succ(f) .(5.1)

Before extending this definition to K-fold faithful rounding, we collect some properties of the ordinary
faithful rounding.

Lemma 5.1. Let r ∈ R be given, and let f ∈ F be a faithful rounding of r. Then

f /∈ U ⇒ |r − f | < 2eps · ufp(r) and |r − f | < 2eps · ufp(f)(5.2)

and

f ∈ U ⇒ |r − f | < eta .(5.3)

Proof. If f ∈ U, then f ± eta are the neighbors of f , and the definition of faithful rounding (5.1) yields
|r − f | < eta. This proves (5.3).

To prove (5.2) we assume f /∈ U and without loss of generality f > 0. For f not being a power of 2 we have
ufp(f) ≤ ufp(r), so (5.1) and (2.11) in Lemma 2.1 imply

|r − f | < 2eps · ufp(f) ≤ 2eps · ufp(r) .

If f is a power of 2, then this is also true if f ≤ r < succ(f) because succ(f) = (1 + 2eps)ufp(f). If
(1− eps)f = pred(f) < r < f then

|r − f | = f − r < eps · f = eps · ufp(f) = 2eps · ufp(r) .

The lemma is proved. ¤

Lemma 5.1 is formulated for general r ∈ R. For our main application, the approximation of the sum
s =

∑
pi of floating-point numbers pi, we have pi ∈ etaZ and therefore s ∈ etaZ. Thus (5.3) reads

in this case f ∈ U ⇒ r = f . Before we define K-fold faithful rounding, we introduce the concept of a
non-overlapping sequence of floating-point numbers.

Definition 5.2. A sequence of floating-point numbers f1, · · · , fk ∈ F is called non-overlapping, if

|fi+1| < 2eps · ufp(fi) if fi 6= 0
fi+1 = 0 if fi = 0

(5.4)

holds true for 1 ≤ i < k.

Remark. Note that trailing zeros are possible, and that a sequence of zeros is by definition non-overlapping.
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The definition implies that for fifi+1 6= 0 the binary expansions of fi and fi+1 do not have a bit in common.
The following properties hold true.

Lemma 5.3. Let f1, · · · , fk be a non-overlapping sequence of floating-point numbers. Then

ufp(fk) ≤ epsk−1ufp(f1) .(5.5)

Moreover,

|
k∑

ν=1

fν | < 2ufp(f1) .(5.6)

Remark. Note that Lemma 5.3 is applicable to any subsequence fi1 , · · · , fim
with i1 > · · · > im because it

is non-overlapping as well.

Proof. Let (f, g) be a non-overlapping sequence. Then the definition (5.4) of non-overlapping implies

ufp(g) ≤ eps · ufp(f) ,(5.7)

and (5.5) follows. To prove (5.6) we first show

|f |+ 2ufp(g) ≤ 2ufp(f) .(5.8)

If f ∈ U, then the definition of the set U and (5.5) imply ufp(g) ≤ 1
2eta and therefore g = 0. If f /∈ U,

then |f | ≤ pred(2ufp(f)) = 2(1−eps)ufp(f), and (5.7) implies (5.8). Without loss of generality we can omit
trailing zeros in the sequence f1, · · · , fk and assume fk 6= 0. Then

|
k∑

ν=1

fν | <
k−1∑
ν=1

|fν |+ 2ufp(fk) ≤
k−2∑
ν=1

|fν |+ 2ufp(fk−1) ≤ · · · ≤ 2ufp(f1) ,

proving (5.6). ¤

Our aim is a sequence (f1, · · · , fk) such that
∑

fν has a small relative error with respect to s, i.e.

|s−
k∑

ν=1

fν | < 2epsk|s| .(5.9)

For that we extend the Definition 2.2 of ordinary faithful rounding to a sequence f1, · · · , fk.

Definition 5.4. A sequence f1, · · · , fk ∈ F is called a (k-fold) faithful rounding of s ∈ R if

fi ∈ 2(s−
i−1∑
ν=1

fν) for 1 ≤ i ≤ k .(5.10)

The sequence is called a strongly faithful rounding if it is in addition non-overlapping.

Of course, a strongly faithful rounding is faithful, but the converse is not true. However, the following lemma
shows that the members of a sequence representing a faithful rounding may overlap in at most one bit, and
subnormal numbers can only occur at the end.

Lemma 5.5. Suppose the sequence f1, · · · , fk ∈ F is a faithful rounding of some s ∈ R. If |fi−1| ≥ 1
2eps

−1eta

for 1 < i ≤ k, then

|fi| ≤ 2eps · ufp(fi−1) with equality if and only if ufp(fi) = |fi| .(5.11)

Moreover, |fm| > 2eta implies fi /∈ U for 1 ≤ i < m, and |fm| < 1
2eps

−1eta implies fi = 0 for m < i ≤ k.
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Proof. Let f1, · · · , fk ∈ F be a faithful rounding of s ∈ R. Then by definition
m−1∑
ν=1

fν + pred(fm) < s <

m−1∑
ν=1

fν + succ(fm) for 1 ≤ m ≤ k .(5.12)

Assume fi ≥ 0. Then using (5.12) for m = i and m = i− 1 gives

pred(fi) < s−
i−1∑
ν=1

fν < succ(fi−1)− fi−1 ∈ F ,

so

ufp(fi) ≤ fi ≤ succ(fi−1)− fi−1 ≤ 2eps · ufp(fi−1) ,

where the last inequality follows by the assumption |fi−1| ≥ 1
2eps

−1eta. The case fi < 0 is treated similarly,
and this proves (5.11), and also the very last statement of the lemma. For fm ≥ 0 and fm > 2eta, (5.12)
yields

succ(fm−1)− fm−1 > s−
m−2∑
ν=1

fν − fm−1 > pred(fm) ≥ 2eta .

Hence fm−1 /∈ U, and an induction argument finishes the proof. ¤

Next we show that faithful rounding is sufficient to satisfy our anticipated bound (5.9) on the relative error
with respect to s.

Proposition 5.6. If a sequence f1, · · · , fk ∈ F is a faithful rounding of some s ∈ R, then

|s−
k∑

ν=1

fν | <





2epskufp(s) if fk /∈ U
2epskufp(f1) if fk /∈ U
eta if fk ∈ U .

(5.13)

Moreover, a sequence representing a faithful rounding need not to be strongly faithful, i.e. may be overlapping.

Proof. For 0 ≤ i ≤ k define ∆i := s −∑i
ν=1 fν . By assumption, fi ∈ 2(∆i−1) for 1 ≤ i ≤ k. If fk ∈ U,

then (5.13) follows by Lemma 5.1. Suppose fk /∈ U, so that Lemma 5.5 implies fi /∈ U for 1 ≤ i ≤ k. Now
Lemma 5.1 yields |∆i| < 2eps ·min

(
ufp(∆i−1), ufp(fi)

)
, hence

ufp(∆i) ≤ eps ·min
(
ufp(∆i−1), ufp(fi)

)
(5.14)

and

ufp(∆k) ≤ epsk−1ufp(∆1) < 2epsk ·min
(
ufp(s),ufp(f1)

)
.

This proves (5.13) because the rightmost expression is a power of 2. Finally consider

f1 = 1− eps, f2 = eps and s = 1− eps3 ,

then

f1 + pred(f2) = 1− eps2 < s < 1 + 2eps2 = f1 + succ(f2)
pred(f1) = 1− 2eps < s < 1 = succ(f1)

implies that (f1, f2) is a faithful rounding of s. However, it is overlapping by |f2| ≥ 2eps · ufp(f1) = eps. ¤

Note the difference to Algorithm 4.8 (SumK) in [18]. There, the result can also be stored in an array of length
K and it is of a quality as if computed in K-fold precision, i.e. with relative rounding error unit epsK . So
the precision is K-fold, the accuracy, however, depends on the condition number of the sum. The accuracy
of the K-fold faithfully rounded result is independent of the condition number.

It is straightforward to derive from Algorithm 4.5 (AccSum) in Part I a new algorithm computing a result as
if computed in K-fold precision, similar to SumK in [18]. This fact has been mentioned independently to the
first author by Nicolas Louvet [15].
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6. Algorithms for K-fold accuracy. Let floating-point numbers p1, · · · , pn be given. Next we will
derive an algorithm to compute a sequence f1, · · · , fK ∈ F representing a strongly faithful rounding of the
sum s :=

∑
pi.

Lemma 6.1. Let for a nonzero vector p of n floating-point numbers and % ∈ F the assumptions of Lemma
3.5 be satisfied. Assume res ∈ F has been computed with the code given in (3.7) in Lemma 3.5. Set
f1 := res, so that f1 ∈ 2(s + %). Furthermore, suppose f2 ∈ 2(s + %− f1) for some f2 ∈ F. Then f1, f2 are
non-overlapping.

Proof. If f2 /∈ U, then (5.2) and (3.10) imply

|f2| ≤ |s + %− f1|+ |s + %− f1 − f2| ≤ |s + %− f1|+ 2eps · ufp(s + %− f1)

≤ (1 + 2eps)|s + %− f1| < 2eps(1 + 2eps)(1− 2−M−1)ufp(f1)

< 2eps · ufp(f1) ,

proving that f1 and f2 are non-overlapping. If f2 ∈ U, then f2 ∈ 2(s + %− f1) implies f2 = s + %− f1, and
the assertion follows similarly. ¤

When applying the code given in Lemma 3.5 to a vector p and % ∈ F, it calculates a faithful rounding res of
s + %, and also extracts p into some vector p′. However, we have no equation relating s, %, res and p′, but
only an estimation which follows from res ∈ 2(s + %). The only equation between the mentioned quantities
we know up to now is s + % = τ1 + τ2 +

∑
p′i as by Lemma 3.5.

However, to be able to repeatedly apply Lemma 6.1 to produce a non-overlapping sequence (f1, · · · , fK), we
need a faithful rounding of s + % − res. This can be done by applying the code given in (3.7) in Lemma
3.5 to % and the vector p appended by −res. However, this would extract the entire vector [p,−res] again
and is ineffective. In the following Algorithm 6.2 (TransformK) we give an effective way to compute a single
floating-point number R relating s, %, res and p′ by an equation. It paves the way to compute a strongly
faithful sequence of K numbers f1, · · · , fK approximating s, thus establishing an approximation of K-fold
accuracy.

Algorithm 6.2. Error-free vector transformation including faithful rounding.

function [res, R, p′] = TransformK(p, %)
[τ1, τ2, p

′, σ] = Transform(p, %) % Parameter Φ replaced by 22Meps

res = fl(τ1 + (τ2 + (
∑n

i=1 p′i)))
R = fl(τ2 − (res− τ1))

Lemma 6.3. Let p be a nonzero vector of n floating-point numbers and let % ∈ F. Abbreviate s :=
∑

pi.
Define M := dlog2(n + 2)e, and assume that 22Meps ≤ 1. Furthermore, assume that % ∈ epsσ0Z is satisfied
for µ := maxi |pi| and σ0 = 2M+dlog2 µe. Let res, R and p′ be the results of Algorithm 6.2 (TransformK)
applied to p and %. Then res is a faithful rounding of s + % and

s + %− res = R +
n∑

i=1

p′i .(6.1)

If res = 0, then res = s + % = 0, and R and all p′i are zero. If the vector p′ is nonzero, then

R ∈ epsσ′Z(6.2)

is satisfied for µ′ := maxi |p′i| and σ′ := 2M+dlog2 µ′e. Moreover, no rounding error occurs in the computation
of R, i.e.

∆ := res− τ1 = fl(res− τ1) and R = τ2 −∆ = fl(τ2 −∆) .(6.3)
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Algorithm 6.2 (TransformK) requires (4m + 3)n +O(m) flops for m executions of the “repeat-until”-loop in
Transform.

Remark 1. The main purpose of Algorithm TransformK is to replace the pair τ1, τ2 by the pair res, R

without error. This makes it suitable for cascading, see Algorithm 6.4 (AccSumK).

Remark 2. The main part of the proof of Lemma 6.3 will be to show that no rounding error can occur in
the computation of R, that is R = τ2 − (res− τ1). The proof is involved and moved to the Appendix.

Remark 3. As is Matlab convention, an output parameter, in this case M for Transform, has been omitted.
The output parameter σ is not needed but added for clarity.

Proof of Lemma 6.3. For the computation of τ1, τ2, p
′, σ and res, Algorithm 6.2 (TransformK) uses the

same piece of code as in (3.7) in Lemma 3.5, so the assertions of Lemma 3.5 are valid. Hence the assertions
follow if res = 0.

First assume σ ≤ 1
2eps

−1eta. Then p′i = 0 for all i by Lemma 3.5, and (3.8) and (3.9) imply s + % = τ1 + τ2

and res = fl(τ1 + τ2) = τ1, so R = τ2 and (6.1) and (6.3) follow. The case σ ≤ 1
2eps

−1eta is finished.

Henceforth we assume σ > 1
2eps

−1eta. We use the notation in Lemma 3.5, especially (3.12). Then |τ ′2| < |τ1|
by (3.15), and res = fl(τ1 + τ ′2) and (2.14) in Lemma 2.5 imply

∆ := res− τ1 = fl(res− τ1) ∈ F .(6.4)

Next we have to show R ∈ F, i.e.

R = fl(τ2 −∆) = τ2 −∆(6.5)

provided σ > 1
2eps

−1eta. This proof is quite involved and left to the Appendix. It verifies (6.3). Now (6.4)
and (6.5) yield R = τ1 + τ2 − res, and (3.8) gives

s + %− res = τ1 + τ2 +
n∑

i=1

p′i − res = R +
n∑

i=1

p′i .

This proves (6.1). To see (6.2) note that (2.8), (3.11) and (2.4) imply ∆ = res − τ1 ∈ eps · ufp(τ1)Z ⊆
22Meps2σZ. Furthermore, (3.9) and 22Meps ≤ 1 yield τ2 ∈ epsσZ ⊆ 22Meps2σZ, and (2.6) gives

R = τ2 −∆ ∈ 22Meps2σZ .

But (3.8) and the definition of σ′ imply epsσ′ ≤ 2Meps2σ, and (6.2) follows by (2.4). ¤

Next we can formulate an algorithm to compute a result of K-fold accuracy, stored in a non-overlapping
result vector Res of length K.

Algorithm 6.4. Accurate summation computing K-fold faithful rounding.

function Res = AccSumK(p,K)
p(0) = p, R0 = 0
for k = 1 : K

[Resk, Rk, p(k)] = TransformK(p(k−1), Rk−1)
if Resk ∈ U, Resk+1..K = 0, return; end if

end for

Proposition 6.5. Let p be a vector of n floating-point numbers and abbreviate s :=
∑

pi. Define M :=
dlog2(n + 2)e, and assume that 22Meps ≤ 1. Let 1 ≤ K ∈ N be given, and let Res be the result vector of
Algorithm 6.4 (AccSumK) applied to p and K.
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Then Res1, · · · , ResK is a strongly faithful rounding of s. Furthermore,

s =
k∑

ν=1

Resν + Rk +
n∑

i=1

p
(k)
i for 1 ≤ k ≤ K .(6.6)

Abbreviate Res :=
∑K

k=1 Resk. Then Resk ∈ U for some 1 ≤ k ≤ K implies Res = s, and Resk /∈ U implies

|s− Res| < 2epsKufp(s) ≤ 2epsK |s|(6.7)

and

|s− Res| < 2epsKufp(Res1) ≤ 2epsK |Res1| .(6.8)

Remark 1. In fact, the sum
∑

Resk is frequently of better accuracy than K-fold since possible zero bits in
the binary representation of s “between” Resk−1 and Resk are not stored.

Remark 2. For k ≥ 3, say, it might be advantageous to eliminate zero summands in the vectors p(k).
Assuming that it seems unlikely that extracted vectors p(k) are ill-conditioned for k ≥ 1 and using the fact
that the new σ needs not to be computed in subsequent calls to TransformK, AccSumK needs (4m + 5K +
3)n +O(m + K) flops if the “repeat-until”-loop in the first extraction TransformK is executed m times.

Remark 3. Also note that the limited exponent range poses no problem to achieve K-fold accuracy. Since
the exact result s is a sum of floating-point numbers, it follows s ∈ etaZ, and also s − ∑

fk ∈ etaZ for
arbitrary floating-point numbers fk. So for a certain K, the sum s is always stored exactly in

∑K
k=1 Resk.

The maximum K can be estimated solely by the exponent range because the sequence (Res1, · · · , ResK) is
non-overlapping. In IEEE 754 single precision at most K ≤ 12 summands are needed, in IEEE 754 double
precision at most K ≤ 40.

Remark 4. In an actual implementation, of course, R and the vector p can be reused. So, for example, the
main statement in Algorithm 6.4 (AccSumK) reads [Resk, R, p] = TransformK(p,R).

Proof of Proposition 6.5. For zero input vector p the assertions are evident; henceforth we assume p to
be nonzero.

For k = 0 the assumptions of Lemma 6.3 are satisfied, so Res1 is a faithful rounding of s =
∑

p
(0)
i . Moreover,

by (6.2) the assumptions of Lemma 6.3 are satisfied for k ≥ 1 as well. With sk :=
∑

p
(k)
i this means

s = s0 = Res1 + R1 + s1

= Res1 + Res2 + R2 + s2

= · · ·
=

∑K
k=1 Resk + RK + sK ,

which is true because Resk ∈ U implies Rk and all p
(k)
i to be zero by Lemma 6.3. This proves (6.6), and that

Resk is a faithful rounding of s−∑k−1
ν=1 Resν for 1 ≤ k ≤ K. Thus the sequence Res1, · · · , ResK is a faithful

rounding of s, and Proposition 5.6 proves (6.7) and (6.8). Moreover, Lemma 6.1 implies Res1, · · · , ResK to
be non-overlapping, thus Res1, · · · , ResK is even a strongly faithful rounding of s. ¤

Now it becomes clear why so much effort was spent (see the Appendix) to prove (6.1) and (6.2): It is the
key to cascade TransformK in Algorithm 6.4 (AccSumK) without increasing the length of the input vector.
Especially for large gaps in the input vector, Rk−1 in AccSumK may be large compared to p(k−1). In that
case a number of case distinctions were necessary in the proof in the Appendix to assure that no rounding
error can occur in the computation of Rk in TransformK.



ACCURATE FLOATING-POINT SUMMATION, PART II 15

7. Rounding to nearest and directed rounding. Using the results of the previous section we can
derive algorithms for computing s :=

∑
pi with directed rounding, i.e. resD := max{f ∈ F : f ≤ s}

for rounding downwards, and resU := min{f ∈ F : s ≤ f} for rounding upwards. Note that resD =
resU is equivalent to s ∈ F. As an example we display Algorithm 7.1 (DownSum) for rounding downwards,
its counterpart looks similarly. The proof of correctness follows straightforwardly by Lemma 6.3 and the
definition of faithful rounding.

Algorithm 7.1. Accurate summation with rounding downwards.

function resD = DownSum(p)
[res, R, p′] = TransformK(p, 0) % s− res = R +

∑
p′i

δ = TransformK(p′, R) % δ ∈ 2(s− res)
if δ < 0, resD = pred(res) % s < res

else resD = res % res ≤ s

end if

Next we show how to compute the rounded to nearest result of the sum of a vector of floating-point numbers.
If res is a faithful rounding of s :=

∑
pi and res 6= s, then res must be one of the immediate floating-point

neighbors of s. Define for c ∈ F \ {±∞} with finite predecessor and successor

M−(c) :=
1
2
(
pred(c) + c

)
and M+(c) :=

1
2
(
c + succ(c)

)
.(7.1)

Then M−(res) < s < M+(res) implies fl(s) = res,

s < M−(res) ⇒ fl(s) = pred(res) and M+(res) < s ⇒ fl(s) = succ(res) ,

s < M+(res) ⇒ fl(s) 6= succ(res) and M−(res) < s ⇒ fl(s) 6= pred(res) ,
(7.2)

and for the cases M−(res) = s and s = M+(res) the rounding depends on the tie. So if sign(res − s) is
known, then the rounding to nearest fl(s) of s can be calculated by computing a faithful rounding of s− µ

with µ ∈ {M−(res),M+(res)}, and it can be decided which of M− or M+ to choose for µ. This is true
because a faithful rounding of s− µ detects the sign with certainty. The sign of res− s could be calculated
by calling AccSum(s,−res) using Algorithm 4.5 (AccSum) in Part I. However, we can do much better. The
following lemma shows how enough information can be extracted from AccSum to decide which of pred(res)
or succ(res) the true rounding to nearest fl(s) can only be in case fl(s) 6= res.

Lemma 7.2. Let p be a vector of n floating-point numbers, define M := dlog2(n+2)e and assume 22Meps ≤ 1.
Let res and δ1 be computed as follows:

[τ1, τ2, p
′] = Transform(p, 0)

τ ′2 = fl(τ2 + (
∑n

i=1 p′i)) % Parameter Φ replaced by 22Meps

[res, δ1] = FastTwoSum(τ1, τ
′
2)

(7.3)

Abbreviate s :=
∑n

i=1 pi. Then δ1 = 0 implies fl(s) = res, and

fl(s) ∈
{
{pred(res), res} if δ1 < 0
{res, succ(res)} if δ1 > 0 .

(7.4)

Proof. The first statement in Algorithm 2.4 (FastTwoSum) is res = fl(τ1 + τ ′2), so the result res computed
in (7.3) is the same as in (3.7) for % = 0. Moreover, the assumptions of Lemma 3.5 are satisfied, so res is a
faithful rounding of s. This means fl(s) ∈ {pred(res), res, succ(res)}. If the final value of σ in Transform

satisfies σ ≤ 1
2eps

−1eta, then the vector p′ is entirely zero and fl(s) = fl(τ1 + τ2) = res. Henceforth we may
assume σ > 1

2eps
−1eta.
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We use the same notation as in Lemma 3.5, especially (3.12). Then |τ ′2| < |τ1| by (3.15), and Lemma 2.5
yields res + δ1 = τ1 + τ ′2 [as in (3.12)], where the error δ1 is the second result of FastTwoSum(τ1, τ

′
2). By

(3.13) we know s = τ1 + τ ′2 + δ, so that δ1 ≤ 0 and (3.17) imply

s = res + δ1 + δ < res +
1
2
eps|res| ≤ M+(res) .

Thus (7.2) shows fl(s) 6= succ(res). The case δ1 ≥ 0 follows similarly, and the case δ1 = 0 follows. ¤

By Lemma 7.2 it can be decided which µ ∈ {M−(res),M+(res)} has to be subtracted from s to decide
whether fl(s) is equal to res or to one of its neighbors. However, µ is not a floating-point number but
could only be subtracted in two parts by splitting µ into res and δres := µ − res ∈ F. Rather than
extracting the vector p appended by −res and −δres again, it is much better to use the already extracted
vector p′. Fortunately, our analysis in Lemma 6.3 gives an equation for s − res in terms of p′i, namely
s − µ = s − res − δres = R +

∑
p′i − δres for R as computed in Algorithm 6.2 (TransformK). Now

Algorithm 3.3 (Transform) allows for one extra parameter to be added to
∑

p′i, but not two. The following
lemma shows that one parameter R′ ∈ F is sufficient and Transform can be applied directly to p′ and R′.

Lemma 7.3. Let p be a vector of n floating-point numbers, define M := dlog2(n+2)e, and assume 22Meps ≤
1. Let res, R and p′ be the results of Algorithm 6.2 (TransformK) applied to p and % = 0. Let δres ∈
{ 1

2 (pred(res)− res), 1
2 (succ(res)− res)} and assume δres ∈ F.

Then R− δres ∈ F. Moreover, if the vector p′ is nonzero, then δres ∈ epsσ′Z is satisfied for µ′ := maxi |p′i|
and σ′ := 2M+dlog2 µ′e.

Proof. For the computation of res we use the same code as in (3.7), the assumptions of Lemma 3.5 and
Lemma 6.3 are satisfied and we may use results of the lemmas and the proofs, especially ∆ = res− τ1 and
R = τ2 −∆.

Assume the final value of σ in Transform satisfies σ ≤ 1
2eps

−1eta. Then by Lemma 3.5 the vector p′ is
entirely zero, s = τ1 + τ2 and res = fl(τ1 + τ2) = τ1. Thus ∆ = res− τ1 = 0 and R = τ2. If the final value
of m in Algorithm 3.3 (Transform) is m = 1, then max |pi| ≤ µ ≤ 2−Mσ so that |s| ≤ nµ < σ implies s ∈ U
and res = s ∈ U, which means δres = eta/2 /∈ F, a contradiction. Therefore, the final value m satisfies
m > 1, and the “until”-condition in yields |res| = |τ1| = |t(m−1)| < 22Mepsσm−2 = 2Mσ ≤ 2M−1eps−1eta.
Hence |δres| ≤ 2M−2eta and |R| = |τ2| ≤ eps|τ1| ≤ 2M−1eta, and R− δres ∈ F follows.

Henceforth we assume σ > 1
2eps

−1eta. Then the assumption δres ∈ F implies |res| ≥ eps−1eta and

δres ∈
{

1
2eps · ufp(res)Z if |res| = ufp(res)
eps · ufp(res)Z if |res| 6= ufp(res)

(7.5)

and

|δres| ≤ eps · ufp(res) .(7.6)

We know by (3.16) and (3.11) that

|res| > 5
8
|τ1| > 22M−1epsσ ≥ 2M+1epsσ .

Moreover (3.8) gives σ′ ≤ 2Mepsσ, so that (7.5) and (2.4) prove δres ∈ 2Meps2σZ ⊆ epsσ′Z.

To show R − δres ∈ F, we distinguish two cases. First, assume |τ1| < σ. Then |τ2| ≤ eps|τ1| < epsσ and
τ2 ∈ epsσZ as in (3.9) yields τ2 = 0. Hence R ∈ F gives R = τ1 − res = fl(τ1 − res), and (2.8) shows
R ∈ eps·ufp(res)Z ⊆ 1

2eps·ufp(res)Z. Regarding (7.5) and (2.10) it suffices to show |R−δres| ≤ 1
2ufp(res).

By (3.12), (2.9), τ2 = 0, (3.14) and (3.11),

|R| = |res− τ1| = |τ3 − δ2 − δ1| ≤ |τ3|+ eps|τ3|+ |δ1| ≤ (1 + eps)nepsσ + eps · ufp(res)
≤ (2M − 1)epsσ + eps · ufp(res) ≤ (2M − 1)2−2Mufp(τ1) + eps · ufp(res) .

(7.7)
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Now (3.16) implies ufp(τ1) ≤ 2ufp(res), so that (7.6) and the assumption 22Meps ≤ 1 yield

|R− δres| ≤
(
(2M − 1)2−2M+1 + 2eps

)
ufp(res) ≤ 2−M+1ufp(res) ≤ 1

2
ufp(res) .

This finishes the first case. Second, assume |τ1| ≥ σ. Then as in (10.7) we see

|R| = |τ2 −∆| ≤ eps(1 + 3eps)|τ1|+ 2Mepsσ ,(7.8)

and by (2.8) we know ∆ = res − τ1 ∈ eps · ufp(τ1) ⊆ epsσZ. We distinguish two subcases. First,
suppose |res| ≤ σ. Then (3.9) yields R = τ2 − ∆ ∈ epsσZ ⊆ 1

2epsσZ. Regarding (7.5) implies δres ∈
1
2eps · ufp(res)Z ⊆ 1

2epsσZ, and with (2.10) it suffices to show |R − δres| ≤ 1
2σ. This is seen with (7.8),

(3.16), (7.6) and

|R− δres| ≤ eps(1 + 3eps)
8
5
σ + 2Mepsσ + epsσ ≤ 3epsσ + 2−Mσ <

1
2
σ.

This leaves us, secondly, with |τ1| ≥ σ and |res| > σ. In this case (7.5) and (3.9) imply ∆, δres ∈ epsσZ
and R = τ2 −∆ ∈ epsσZ as well, so with (2.10) it suffices to show |R− δres| ≤ σ. We have t(0) = % = 0 in
Algorithm 3.3, so for the final value of m in the “until”-condition (Transform) and with (3.3) we have

|τ1| = |fl(t(m−1) + τ (m))| < (1 + eps)(22Mepsσm−2 + σ) = (1 + eps)(2M + 1)σ < (2M + 2)σ .

Now (3.12) and (3.15) give

|res| ≤ (1 + eps)|τ1 + τ ′2| ≤ (1 + 2eps)2|τ1|+ 2Mepsσ < (2M + 3)σ ,

so that (7.6) yields |δres| ≤ 2Mepsσ. Using (7.8) and 22Meps ≤ 1 we conclude

|R− δres| < (2M + 4)epsσ + 2M+1epsσ ≤ 2M+2epsσ ≤ σ .

The lemma is proved. ¤

We note that Lemma 7.3 does not remain true for % 6= 0 as is seen by % = 1, the 1-element vector p = eps2

and the choice δres = −eps. However, we do not need this case in the sequel.

Now we can state the algorithm to compute the rounded-to-nearest result of a sum of floating-point numbers.

Algorithm 7.4. Accurate summation with rounding to nearest.

function resN = NearSum(p)
[τ1, τ2, p

′] = Transform(p, 0) % Parameter Φ replaced by 22Meps

τ ′2 = fl(τ2 + (
∑n

i=1 p′i))
[res, δ] = FastTwoSum(τ1, τ

′
2) % res + δ = τ1 + τ ′2

if δ = 0, resN = res, return, end if % fl(s) = res

R = τ2 − (res− τ1) % s− res = R +
∑

p′i
if δ < 0 % fl(s) ∈ {pred(res), res}

γ = pred(res)− res % res + γ = pred(res)
if γ = −eta, resN = res, return, end if % M−(res) /∈ F ⇒ s = res

δ′ = γ/2 % µ := res + δ′ = M−(res)
δ′′ = TransformK(p′, R− δ′) % s− µ = R− δ′ +

∑
p′i, δ′′ ∈ 2(s− µ)

if δ′′ > 0, resN = res % s > M−(res)
elseif δ′′ < 0, resN = pred(res) % s < M−(res)
else resN = fl(res + δ′) % s = M−(res)

end if
else % fl(s) ∈ {res, succ(res)}

the case δ > 0 is treated similarly
end if
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Theorem 7.5. Let p be a vector of n floating-point numbers, define M := dlog2(n + 2)e, and assume
22Meps ≤ 1. Let resN be the result of Algorithm 7.4 (NearSum) applied to p.

Then resN = fl(s) is the rounded-to-nearest exact sum s :=
∑n

i=1 pi in the sense of IEEE 754.

Remark 1. When the floating-point rounding “fl” is omitted in Algorithm 7.4, then we will show that no
rounding error can occur.

Remark 2. Note that numerical evidence suggests that it seems worth to check for δ = 0 to save the second
extraction by TransformK. If the “repeat-until”-loop in the first and second extraction by TransformK is
executed m and m′ times, respectively, and using the fact that the second extraction unit σ needs not to be
computed, then NearSum needs (4m + 4m′ + 4)n +O(m + m′) flops.

Remark 3. Note that we generally assume that no overflow occurs, however, this is easily treated by some
scaling.

Remark 4. We used the predecessor and successor of a floating-point number. These are especially easy
to calculate if directed rounding as in IEEE 754 is available. Otherwise, for example, they may computed
in rounding to nearest using Algorithm 3.5 (NextPowerTwo) from Part I of this paper, or by the algorithms
presented in [23].

Proof of Theorem 7.5. The internal result res is computed in the same way as in (7.3), and the
assumptions of Lemma 7.2 are satisfied. The quantity δ1 in Lemma 7.2 is the same as δ in NearSum.
Therefore, fl(s) ∈ {pred(res), res, succ(res)}, and δ = 0 implies fl(s) = res. The quantity R is computed
exactly the same way as in Algorithm 6.2 (TransformK), so (6.1) implies s− res = R +

∑
p′i.

If δ < 0, then (7.4) implies fl(s) ∈ {pred(res), res}. The quantity γ = pred(res) − res is always in F,
and γ = −eta together with res ∈ 2(s) and s =

∑
pi ∈ etaZ implies s = res. If γ 6= −eta, then

δ′ = 1
2 (pred(res)− res) ∈ F and M−(res) = res + δ′. The quantity δres in Lemma 7.3 is the same as δ′,

so R − δ′ ∈ F. Moreover, using σ′ = 2M+dlog2 µ′e with µ′ := maxi |p′i| as in Lemma 6.3, (6.2) and Lemma
7.3 prove R, δ′, R − δ′ ∈ epsσ′Z for the first extraction of (p, 0), so that the assumptions of Lemma 6.3 for
the application of Algorithm 6.2 (TransformK) to (p′, R− δ′) are satisfied. Therefore δ′′ ∈ 2(R− δ′+

∑
p′i),

where R− δ′ +
∑

p′i = s− res− δ′ = s−M−(res). Hence sign(s−M−(res)) = sign(δ′′). So the assertion
follows by (7.2) if δ′′ 6= 0. Finally, if δ′′ = 0, then s = M−(res) and fl(s) = fl(M−(res)).

The case δ > 0 is programmed and treated similarly, and the theorem is proved. ¤

In contrast to Algorithm 4.5 (AccSum) in Part I, the computing time of Algorithm 7.4 (NearSum) depends
on the exponent variation of the vector entries rather than on the condition number of the sum. However,
it seems unlikely that the maximum number of 40 extractions for IEEE 754 double precision is achieved in
other than constructed examples.

There is an apparent contradiction, namely that the computing time of AccSum is proportional to the loga-
rithm of the condition number, but that of NearSum with only one extra call of Algorithm 6.2 (TransformK)
is not. However, the computing time of AccSum to compute a faithfully rounded result is proportional to
tf := log(cond (

∑
pi)), but that of NearSum is proportional to tN := log(cond (R − δ′ +

∑
p′i)), where

R − δ′ +
∑

p′i is the difference between the exact sum s and one of the “switching points” M−(res) or
M+(res). Note that, subject to the size of the exponent range, tN/tf can be arbitrarily large.

Finally we mention that combining the results of Sections 6 and 7 we can easily define an algorithm pro-
ducing a sequence of K floating-point numbers representing a K-fold rounded-to-nearest result of s =

∑
pi.

Consider Algorithm 6.4 (AccSumK) changed in such a way that only the last member ResK of the sequence
(Res1, · · · , Resk) is computed in rounding-to-nearest using a piece of code similar to that in Algorithm 7.4



ACCURATE FLOATING-POINT SUMMATION, PART II 19

(NearSum). Then (5.14) implies in the notation of the proof of Proposition 5.6

|s−
K∑

k=1

Resk| = |∆K | ≤ eps · ufp(∆K−1) ≤ epsKufp(s) ≤ epsK |s| .

Hence
∑

Resk is of the same accuracy as a nearest floating-point approximation in a floating-point grid with
relative rounding error unit epsK , and the last member ResK is s−∑K−1

k=1 Resk rounded-to-nearest.

8. Vectors of huge length. In IEEE 754 double precision our summation algorithm computes a
faithful rounding of the exact result for up to about 6.7 · 107 summands, this restriction imposed by the
assumption 22Meps ≤ 1. This should suffice for most practical purposes. In IEEE 754 single precision with
eps = 2−24, the number of summands is restricted to n = 4094, which may be an obstacle for the application
of our algorithms.

In Section 4 we showed that using 2Meps for the parameter Φ in Algorithm 3.3 (Transform) we have enough
information to calculate the sign of a sum. This was also true for huge vector lengths. Next we show how
to compute a faithfully rounded result of the sum for huge vector lengths. For this we continue to extract
p′i by Transform until the error term of the summation of the extracted vector is small enough compared to
τ1. This is done in the following Algorithm 8.1 (AccSumHugeN).

Algorithm 8.1. Accurate summation with faithful rounding for huge n.

function res = AccSumHugeN(p)
[τ1, τ2, q

(0), σ,M ] = Transform(p, 0) % Parameter Φ replaced by 2M+3eps

if σ ≤ 1
2eps

−1eta, res = τ1, return, end if
k = 0; σ0 = fl(2Mepsσ)
repeat

k = k + 1
[τ (k), q(k)] = ExtractVector(σk−1, q

(k−1))
σk = fl(2Mepsσk−1)

until |τ1| ≥ fl
(
(22M+1eps)σk−1

)
or σk−1 ≤ 1

2eps
−1eta

τ̃ (1) = fl
(
τ (1) + (τ (2) + · · ·+ (τ (k) + (τ2 + (

∑n
i=1 q

(k)
i ))) · · ·))

res = fl(τ1 + τ̃ (1))

Proposition 8.2. Let p be a vector of n floating-point numbers, assume 2M+3eps ≤ 1 < 22Meps and
eps ≤ 1/512. Let res be the result of Algorithm 8.1 (AccSumHugeN) applied to p.

Then res is a faithful rounding of s :=
∑n

i=1 pi. The algorithm needs (4m + 4K + 3)n +O(m + K) flops for
m “repeat-until”-loops within Transform and K denoting the final value of k.

Remark 1. For IEEE 754 single precision with eps = 2−24 this limits the vector length to a little over 2
million rather than n = 4094 for Algorithm AccSum. For IEEE 754 double precision the vector length is now
limited to about 1.1 · 1015.

Remark 2. For huge vector lengths near the admissible maximum, however, the algorithm becomes rather
inefficient because few bits, possibly only three bits, are extracted in each execution of Transform .

Remark 3. We mention that the parameters can be adjusted so that the weaker assumption 2M+2eps ≤ 1
suffices. However, this extracts ultimately only two bits at a time.

Remark 4. The assumption 1 < 22Meps imposes no restriction because otherwise Algorithm 4.5 (AccSum)
in Part I can (and for better performance should) be used.
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Proof of Proposition 8.2. Algorithm Transform is called with % = 0. So 2Meps ≤ 1
8 and Lemma 3.4

imply

s = τ1 + τ2 +
n∑

i=1

q
(0)
i ,(8.1)

max |q(0)
i | ≤ epsσ,(8.2)

τ1 = fl(τ1 + τ2) and |τ2| ≤ eps|τ1| .(8.3)

Abbreviate ϕ := 2Meps. The assumptions imply

ϕ = 2Meps ≤ 1
8

, eps ≤ 1
512

, M ≥ 5 and σk = ϕk+1σ for 0 ≤ k ≤ K ,(8.4)

and the choice of Φ and (3.5) gives

|τ1| ≥ 8ϕσ .(8.5)

We first show that we may assume

σ >
1
2
eps−1eta and |τ1| ≥ eps−1eta(8.6)

without loss of generality. To see that, first assume that σ, computed by Algorithm Transform, is in the
underflow range. Then q(0) is the zero vector by Lemma 3.4, and fl(s) = res by (8.1). Second, assume
|τ1| < eps−1eta. Then (8.5) implies 8ϕσ ≤ |τ1| < eps−1eta, so that by σ0 = ϕσ < 1

8eps
−1eta the “repeat-

until”-loop is finished for k = 1. Moreover |τ2| ≤ eps · ufp(τ1) ≤ 1
2eta implies τ2 = 0, and by Theorem 3.2,

|q(1)
i | ≤ epsσ0, so that the vector q

(1)
i is identically zero. Therefore res = fl(τ1 + τ (1)) = fl(s) by (8.7), and

res is again a faithful rounding of s.

By definition of σ0 and (8.2), maxi |q(0)
i | ≤ 2−Mσ0, so the assumptions of Theorem 3.2 are satisfied for the

first call of ExtractVector with k = 1. Therefore,

s = τ1 + τ2 + τ (1) +
n∑

i=1

q
(1)
i , |τ (1)| < σ0 and max

i
|q(1)

i | ≤ epsσ0 = 2−Mσ1 .

If σ0 ≤ 1
2eps

−1eta, then the loop finishes and a possible rounding error in the computation of σ1 does no
harm since σ1 is not used. If σ0 > 1

2eps
−1eta, then σ1 is computed without rounding error and can safely

be used. Note that the assumption 1 < 22Meps implies that no rounding error occurs in the computation
of fl

(
(22M+1eps)σk−1

)
in the “until”-condition.

Again, the assumptions of Theorem 3.2 are satisfied for the next call of ExtractVector, and repeating this
argument shows

s = τ1 + τ2 +
k∑

ν=1

τ (ν) +
n∑

i=1

q
(k)
i , |τ (k)| < σk−1 and max

i
|q(k)

i | ≤ 2−Mσk(8.7)

for k between 1 and its final value K. The same argument as before applies to possible rounding errors in
the computation of σK . Denote

τ (K+1) := τ2 +
( n∑

i=1

q
(K)
i

)
and τ̃ (K+1) := fl

(
τ2 + (

n∑

i=1

q
(K)
i )

)
= τ (K+1) − δK+1,(8.8)

τ̃ (k) := fl
(
τ (k) + τ̃ (k+1)

)
= τ (k) + τ̃ (k+1) − δk for 1 ≤ k ≤ K .(8.9)

Then τ̃ (1) = τ (1) + τ̃ (2) − δ1 = τ (1) + τ (2) + τ̃ (3) − δ2 − δ1 = · · ·, so that

τ̃ (1) =
K+1∑

k=1

τ (k) −
K+1∑

k=1

δk =
K∑

k=1

τ (k) + τ2 +
n∑

i=1

q
(K)
i −

K+1∑

k=1

δk .(8.10)
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Denote τ ′ :=
∑

q
(K)
i and τ̃ ′ := fl

(∑
q
(K)
i

)
. Then by definition (8.8), (8.7), (2.7) and n + 2 ≤ 2M ,

|δK+1| = |τ̃ (K+1) − τ (K+1)| = |fl(τ2 + τ̃ ′)− (τ2 + τ̃ ′) + (τ2 + τ̃ ′)− (τ2 + τ ′)|
≤ eps|τ2 + fl

( ∑
q
(K)
i

)|+ |fl( ∑
q
(K)
i

)−∑
q
(K)
i |

≤ eps
(|τ2|+ n2−MσK + 1

2n(n− 1)2−MσK

)

< eps
(|τ2|+ 2M−1σK

)
.

(8.11)

Next we need an upper bound on |τ̃ (k)|. We use an induction argument to show

|τ̃ (k)| ≤
( K+1−k∑

ν=0

(1 + eps)ν+1ϕν
)
σk−1 + (1 + eps)K+2−k|τ2| for 1 ≤ k ≤ K + 1 .(8.12)

For k = K + 1 this follows by (8.5)

|τ̃ (K+1)| ≤ (1 + eps)|τ2 + fl
(∑

q
(K)
i

)| ≤ (1 + eps)(|τ2|+ n2−MσK) < (1 + eps)(|τ2|+ σK) ,

again using (2.7), and the induction step uses

|τ̃ (k)| ≤ (1 + eps)
(|τ (k)|+ |τ̃ (k+1)|)

by (8.9), and |τ (k)| < σk−1 by (8.7). Hence (8.4) gives

|τ̃ (k)| ≤ 1 + eps

1− (1 + eps)ϕ
ϕkσ + (1 + eps)K+2−k|τ2| for 1 ≤ k ≤ K + 1 ,

and by (8.9) and (8.4) it follows

eps−1|δk| ≤ |τ̃ (k)| ≤ 147
128

ϕkσ + (1 + eps)K+2−k|τ2| for 1 ≤ k ≤ K .(8.13)

Next we need an upper bound on K, the final value of k. Denote eps = 2−m, then (8.4) gives m ≥ 9 and
M −m ≤ −3. If K ≥ 2, then the “until”-condition, (8.5) and (8.4) imply 8ϕσ ≤ |τ1| < 22M+1epsσK−2 =
2M+1σK−1 = 2M+1ϕKσ, so that 8ϕ ≤ 2MϕK . Hence K − 1 ≤ M−3

m−M , so that

K ≤ M

3
and K ≤ m− 3

3
,(8.14)

which is by (8.4) also true for K < 2. Therefore, m ≥ 9 yields

(1 + eps)K ≤ (1 + 2−m)
m−3

3 <
129
128

and (1 + eps)2
(1 + eps)K − 1

eps
≤ 1

128
eps−1 .(8.15)

Now the definition of res, (8.13), (8.3), (8.15), (8.4) and (8.5) yield

|res| ≥ (1− eps)
(|τ1| − |τ̃ (1)|)

≥ (1− eps)
(|τ1| − 147

128ϕσ − (1 + eps)K+1eps|τ1|
)

≥ 127
128 |τ1| − 147

128ϕσ .

(8.16)

Hence (8.5) yields

|res| > 217
256

|τ1| ,(8.17)

and (8.6) implies res /∈ U. Now set r := τ1 + τ̃ (1), so that res = fl(r). Then (8.7) and (8.10) imply

δ := s− r =
K+1∑

k=1

δk .
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Table 8.1

Minimum treatable vector length n by Algorithm 8.1 depending on K

K single precision double precision
1 8190 1.3·108

2 65534 6.8·1010

3 2.6·105 1.0·1012

4 5.2·105 4.3·1012

5 1.0·106 1.7·1013

We will show 2|δ| < eps|res| and apply Lemma 2.3 to demonstrate that res is a faithful rounding of the
true result s. First we need to bound δK+1. If σK−1 ∈ U, then (8.7) implies q

(K)
i = 0 for all i, and (8.8)

gives δK+1 = 0. Otherwise the “until”-condition and (8.11) yield

2M−1σK = 22M−1epsσK−1 ≤ 1
4
|τ1| and eps−1|δK+1| ≤ (eps +

1
4
)|τ1| .

Hence (8.13), (8.15), eps ≤ 1
512 and ϕσ ≤ 1

8 |τ1| show

eps−1|δ| < 147
128

ϕ
1−ϕσ + (1 + eps)2 (1+eps)K−1

eps |τ2|+ eps−1|δK+1|
≤ 147

112ϕσ +
(

1
128 + eps + 1

4

) |τ1|
≤ 217

512 |τ1| ,

(8.18)

and (8.17) gives 2|δ| < eps|res|. Therefore res /∈ U and Lemma 2.3 prove that res is a faithful rounding of
s. The proof is finished. ¤

With (8.14) we see that for IEEE 754 double precision at most K = 17 extractions are possible, and we
can also estimate the minimum treatable vector length n by Algorithm 8.1 (AccSumHugeN) depending on
the number of extra extractions. Suppose the “repeat-until”-loop in Algorithm 8.1 (AccSumHugeN) has been
executed K times, and assume

M ≤ mK + 2
K + 1

.(8.19)

Then the first call of Transform implies |τ1| ≥ 8ϕσ and a little computation using eps = 2m yields

|τ1| ≥ 2M+3−m ≥ 22M+1epsϕK ,

so that the “until”-condition is satisfied. That means, if M satisfies (8.19), then the “repeat-until”-loop
in AccSumHugeN is executed at most K times. It follows the minimum treatable vector lengths n with K

loops, which are summarized in Table 8.1. As expected, AccSumHugeN becomes inefficient for a vector length
approaching eps−1; in IEEE 754 single precision about 106 and in double precision about 2 · 1013 may be
a reasonable limit for n. As before an algorithm with K-fold faithful rounding and rounding-to-nearest for
input vectors of huge length may be developed as well.

9. Computational results. In the following we give some computational results on different architec-
tures. All programming and measurement was done by the second author.

All algorithms are tested in three different environments, namely Intel Pentium 4, Intel Itanium 2 and AMD
Athlon 64. We carefully choose compiler options to achieve best possible results, see Table 9.1.

We faced no problems except for Pentium 4 and the Intel Visual Fortran 9.1 compiler, where the code opti-
mization/simplification is overdone by the compiler. A typical example is the first line qi = fl ((σ + pi)− σ)
in Algorithm 3.1 (ExtractVector), which is optimized into qi = pi. This can, of course, be avoided by setting
appropriate compiler options; however, this may slow down the whole computation. In this specific case the
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Table 9.1

Testing environments

CPU, Cache sizes Compiler, Compile options
Peak performance (for summation) Memory bandwidth (approx.)

I) Intel Pentium 4 (2.53GHz) Intel Visual Fortran 9.1
L2: 512KB /O3 /QaxN /QxN [/Op, see Table 9.2]
2.53GFlops 1GB/s

II) Intel Itanium 2 (1.4GHz) Intel Fortran 9.0
L2: 256KB, L3: 3MB -O3

2.8GFlops 2.6GB/s
III) AMD Athlon 64 (2.2GHz) GNU gfortran 4.1.1

L2: 512KB -O3 -fomit-frame-pointer

-march=athlon64 -funroll-loops

2.2GFlops 3GB/s

Table 9.2

Compile options for Pentium 4, Intel Visual Fortran 9.1

Algorithm Necessity of compile option /Op

SSum No
Sum2 Yes, for TwoSum
XBLAS Yes, for TwoSum and FastTwoSum

Priest, PriestS Yes, for FastTwoSum
Malcolm, MalcK, MalcN, MalcS, LAccu, LAccuK, LAccuN, LAccuS Yes, for Split
AccSum, AccSumK, NearSum, AccSumHugeN, AccSign Basically, no

second author suggested a simple trick to overcome this by using qi = fl (|σ + pi| − σ) instead. This does
not change the intended result since |pi| ≤ σ is assumed in the analysis (Theorem 3.2), it avoids unintended
compiler optimization, and it does not slow down the computation. For the other algorithms to be tested we
had to use, however, the compile option /Op for Pentium 4. This ensures the consistency of IEEE standard
754 floating-point arithmetic. The compile options for the different algorithms are summarized in Table 9.2.

To test the algorithms presented in this paper, examples for huge condition numbers larger than eps−1 were
generated by Algorithm 6.1 in [18], where a method to generate a vector whose summation is arbitrarily ill-
conditioned is described. All tests are performed in IEEE 754 double precision except those for AccSumHugeN,
which are performed in IEEE 754 single precision.

First, test results for Algorithm 6.4 (AccSumK) for K-fold faithfully rounded results are presented. For all
examples we choose dimension n = 1000 and small condition number around 103 or so and watch the effect
of increasing values of K. If the condition number of the initial sum and of sums of intermediately extracted
vectors does not exceed eps−1 significantly, we may expect the computing time to grow linearly in K.

Competitors for K-fold rounding are Malcolm’s summation [16] and the long accumulator [12]. In fact,
both approaches produce the bit representation of the exact result in an intermediate step: Malcolm’s in an
overlapping sequence of floating-point numbers, and the long accumulator in a non-overlapping sequence.
From this it is not too difficult to extract a result of K-fold accuracy; the corresponding algorithms are
denoted by MalcK and LAccuK, respectively. In Table 9.3 we normed the computing time of AccSum to 1,
practically the same computing time as for AccSumK for K = 1.

Indeed we observe the linear dependency of AccSumK in K. For MalcK and LAccuK there is not too much
dependency on K since the exact result of the sum is computed anyway; only some additional effort to
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Table 9.3

Measured computing times for AccSumK, n = 1000, cond ∼ 103, for all environments time of AccSum normed to 1

CPU Intel Pentium 4 (2.53GHz) Intel Itanium 2 (1.4GHz) AMD Athlon 64 (2.2GHz)
Compiler Intel Visual Fortran 9.1 Intel Fortran 9.0 GNU gfortran 4.1.1

K MalcK LAccuK AccSumK MalcK LAccuK AccSumK MalcK LAccuK AccSumK

1 17.5 91.7 1.0 14.4 54.1 1.0 6.0 28.0 1.0
2 17.1 89.8 1.6 15.5 57.4 1.4 6.1 28.8 1.8
3 18.4 89.8 2.2 15.5 57.1 1.8 6.2 28.4 3.1
4 19.2 89.8 3.4 15.9 57.4 2.5 6.3 28.6 3.9
5 20.0 91.8 3.9 16.2 57.6 2.9 6.5 29.1 4.8
6 22.4 89.8 4.6 16.5 57.5 3.4 6.7 28.9 5.6
7 23.7 91.8 5.7 16.9 57.7 4.1 6.9 28.8 6.9
8 27.5 95.8 6.4 17.4 57.9 4.5 7.2 28.9 7.7
9 30.0 93.8 7.0 17.9 58.1 4.9 7.6 29.3 8.5

10 32.2 93.9 8.0 18.5 58.4 5.6 7.9 29.5 9.8

Table 9.4

Measured computing times for NearSum, n = 1000, for all environments time of AccSum normed to 1

CPU Intel Pentium 4 (2.53GHz) Intel Itanium 2 (1.4GHz) AMD Athlon 64 (2.2GHz)
Compiler Intel Visual Fortran 9.1 Intel Fortran 9.0 GNU gfortran 4.1.1
condnear MalcN LAccuN NearSum MalcN LAccuN NearSum MalcN LAccuN NearSum

108 17.3 92.2 1.7 14.7 57.2 1.7 5.5 28.3 1.8
1016 16.9 92.3 1.7 14.7 58.0 1.7 5.5 27.5 1.8
1024 16.5 92.3 2.2 14.9 58.4 2.0 5.7 28.2 2.3
1032 17.3 94.1 2.2 14.9 58.4 2.0 5.7 27.9 2.3
1040 16.6 90.6 2.7 15.4 58.8 2.5 5.9 29.0 2.8
1048 17.3 92.3 3.2 15.4 59.0 2.6 5.9 28.3 3.2
1056 17.3 94.2 3.1 15.5 58.9 2.7 6.1 29.1 3.2
1064 17.7 92.3 3.7 15.7 61.7 2.9 6.4 29.1 3.7

extract from this a sequence of K floating-point numbers is necessary. On AMD Athlon 64 and for large
K, Malcolm’s approach is superior to AccSumK. Note that the accuracy of the results

∑
Resk may in fact

be better than K-fold since there may be sequences of adjacent zeros in the bit representation of the exact
result, producing gaps between adjacent Resk.

Next we tested NearSum. Challenging examples for rounding to nearest have an exact sum near the midpoint
of two adjacent floating-point number. The usual condition number for the sum

∑
pi is

∑ |pi|/|
∑

pi|, cf.
(4.25) in Part I of this paper, measuring the amount of cancelation. For rounding to nearest we may use

condnear :=
∑ |pi|

min{| 12 (f + succ(f))−∑
pi| : f ∈ F} ,(9.1)

measuring the nearness of the sum to a “switching-point” for rounding to nearest. In Table 9.4 we normed
again the computing time for AccSum to 1, so the additional amount of computing time to go from faithful
rounding to rounding to nearest is monitored. Again, Malcolm’s algorithm and the long accumulator compute
a bit representation of the exact sum, and from there it is not difficult to derive the rounded-to-nearest result.
The corresponding algorithms are denoted by MalcN and LAccuN, respectively. In all examples we choose
the dimension n = 1000.

For small condition number the ratio of computing times for NearSum shows the expected factor 2 compared
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Table 9.5

Measured computing times for AccSumHugeN in single precision, cond = 108, time of SSum normed to 1

CPU Intel Pentium 4 (2.53GHz) Intel Itanium 2 (1.4GHz)
Compiler Intel Visual Fortran 9.1 Intel Fortran 9.0

n Sum2 XBLAS Malcolm LAccu AccSum Sum2 XBLAS Malcolm LAccu AccSum

10,000 40.0 150.0 888.9 777.8 25.6 7.9 55.9 858.3 930.5 32.5
20,000 32.7 122.7 772.7 681.8 20.0 7.9 55.6 900.0 940.5 32.8
40,000 32.7 122.7 681.8 681.8 23.6 7.9 55.6 867.6 940.5 36.9
80,000 30.8 108.3 911.5 607.6 45.8 6.9 48.3 1058.8 816.7 35.8

160,000 4.5 15.8 125.5 94.1 21.6 6.4 44.4 961.5 743.4 36.1
320,000 3.6 12.7 176.9 70.8 23.3 6.0 40.4 1398.7 682.0 48.3
640,000 3.6 13.3 176.1 76.6 29.3 4.3 28.4 965.1 472.0 53.4

1,280,000 3.5 13.0 242.3 71.9 36.9 4.2 26.5 1253.2 445.1 63.0

to AccSum caused by the additional call of TransformK. Also as expected, the computing time of MalcN and
LAccuN is almost independent of the condition number. For n = 1000 some 43 bits are extracted in double
precision at a time. Hence for condition number 1064 which is about 2213 we need some 5 extractions, and
this is reflected in the computing time ratio of NearSum to AccSum in Table 9.4. Note that condition numbers
exceeding 1016 occur only in very special applications.

In Figures 5.1 and 5.3 in Part I of this paper we displayed the MFlop-rates for different algorithms. They
showed that AccSum achieves a much better MFlop-rate than Malcolm’s or long accumulator algorithm. For
AccSumK and NearSum this is similar; for small condition numbers they achieve about 85% to 95%, for larger
ones between 105% up to 160% and a little more of the MFlop-rate of AccSum. This corresponds to about
50% to 80% of the peak performance.

Next we tested AccSumHugeN. For double precision we may use AccSum until dimension n = 6.4 · 107. For
such large dimensions we would basically measure cache misses rather than performance of the algorithms.
Therefore we rewrote all algorithms in single precision. We use the same names Malcolm, LAccu and AccSum

as before, so AccSum in the following Tables 9.5 and 9.6 refers to AccSumHugeN. For increasing dimension fewer
and fewer bits can be extracted by AccSumHugeN at a time, thus requiring more and more extractions. We
tested dimensions from n = 10, 000 up to n = 1, 280, 000, which is the range of applicability of AccSumHugeN
where the dimension is too large for AccSum. All examples are generated to have condition number 108.

The results for Pentium 4 and Itanium 2 architectures are displayed in Table 9.5, where now the computing
time of SSum, the ordinary single precision recursive summation, is normed to 1. Moreover, the ratio of
computing time for single precision Sum2 [18] and XBLAS [14, 1] to SSum is displayed. Note that both deliver
a result “as if” calculated in twice single precision (i.e. 48 bits precision). So for condition number 108 we
can expect almost full accuracy of the result, but for condition numbers 248 ∼ 2 · 1014 and above we cannot
expect a single correct digit of the computed result; hence the comparison to the other algorithms is not
quite fair.

As in Part I of this paper we observed a significant performance drop for larger dimensions due to cache
misses. So, as also explained in Part I, algorithms Sum2 and XBLAS do not become relatively faster, but the
reference SSum gets abruptly slower at a certain dimension. As expected, the computing time for AccSum

grows slowly with increasing dimension. Both Malcolm and LAccu suffer severely from the small sizes of
the internal accumulators. Note that although AccSum computes a result of much better quality, namely a
faithfully rounded result, it is faster than XBLAS up to dimensions where cache misses appear.

The results for AMD Athlon architecture are displayed in Table 9.6, left the ratio of computing times relative
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Table 9.6

Test AccSumHugeN in single precision on AMD Athlon 64 (2.2GHz), GNU gfortran 4.1.1, cond = 108. Left: Measured

computing times, time of SSumU normed to 1, Right: Measured MFlops

n Sum2 XBLAS Malcolm LAccu AccSum SSum SSumU Malcolm AccSum

10,000 12.5 31.1 203.5 325.4 43.5 333 2193 119 1159
20,000 11.0 26.1 170.0 272.3 33.8 548 1838 119 1253
40,000 9.6 23.4 151.9 243.9 37.6 551 1645 119 1180
80,000 9.5 23.0 205.3 240.4 39.8 551 1623 158 1264

160,000 5.3 12.6 111.4 130.1 25.9 539 874 157 1182
320,000 4.6 11.0 157.6 114.0 27.3 539 767 185 1207
640,000 4.5 10.9 156.2 112.4 34.3 536 757 184 1216

1,280,000 4.4 10.9 222.2 112.1 45.2 538 756 191 1189

to recursive summation SSumU with unrolled loops, right MFlops. As explained in Part I this is the only
architecture out of the three where unrolled loops speed up recursive summation SSum. For n = 10, 000 the
speed up is a factor 6.6, i.e. SSumU is more than 6 times faster than SSum. We programmed also the other
algorithms XBLAS etc. with unrolled loops, but observed almost no difference.

Again there is a drop in performance at a certain dimension. The MFlop-rates are displayed in the right
half of Table 9.6. For Sum2, XBLAS and LAccu those are 1200, 690 and 200, respectively, for all dimensions,
so they are not displayed. So the MFlop-rate of AccSum is significantly slower than that of SSumU for small
dimension, and becomes superior for larger dimensions.

Finally we tested AccSign. To compute the sign of a sum of floating-point numbers is very simple from the
intermediate result of Malcolm’s or the long accumulator algorithm. Since a bit representation of the exact
sum is available, the sign is immediately available. However, the exact sum is always computed, no matter
how well- or ill-conditioned the problem is.

For AccSign we use the weak “until”-condition with the factor 2Meps rather than 22Meps in AccSum. We
proved that this is weakest possible, just sufficient to guarantee the correct sign. Another competitor is now
Priest’s doubly compensated summation. The computed approximation res of s :=

∑
pi satisfies [19, 20]

the error estimate |res− s| ≤ 2eps|s|, therefore sign(res) = sign(s).

The adapted algorithms by Malcolm and Priest to compute sign(s) are denoted by MalcS and PriestS,
respectively. To save space we omit results for the long accumulator. The following Table 9.7 shows the
results for fixed vector length n = 1000. The first column “cond ” denotes the condition number of the sum;
all computations are performed in double precision. Note again that condition numbers up to 1016 are the
generic case.

As can be seen from Table 9.7, where the time for AccSum is normed to 1, the improved stopping criterion in
AccSign pays for non-extreme condition numbers. The improvement becomes negligible for huge condition
numbers. The corresponding ratios for the long accumulator LAccuS are at best 38, 20 and 10 for the three
architectures and largest condition number 1064, and for “small” condition number, the generic case, about
110, 51 and 30, respectively.

Finally we tested our algorithms for the special case of zero sums. For Malcolm’s, the long accumulator or
Priest’s algorithm this does not make much difference, but for AccSign and AccSum it does. In this case the
input vector has to be extracted completely, until the final extracted vector is entirely zero. Note that the
condition number of a zero sum is infinity.

The results are displayed in Table 9.8, where the time for AccSign is normed to 1. All computations are
performed in double precision. The first column “Exp. range” depicts 53(1 − logeps(emax − emin)), where
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Table 9.7

Measured computing times for AccSign, n = 1000, for all environments time of AccSum normed to 1

CPU Intel Pentium 4 (2.53GHz) Intel Itanium 2 (1.4GHz) AMD Athlon 64 (2.2GHz)
Compiler Intel Visual Fortran 9.1 Intel Fortran 9.0 GNU gfortran 4.1.1

cond PriestS MalcS AccSign PriestS MalcS AccSign PriestS MalcS AccSign

108 35.4 10.1 0.55 36.8 9.5 0.71 13.8 3.6 0.43
1016 35.4 10.0 0.91 36.4 9.5 0.94 13.8 3.5 0.74
1024 26.7 7.6 0.93 29.3 7.7 0.95 10.5 2.7 0.78
1032 23.6 6.8 0.95 29.4 7.8 0.95 10.5 2.7 0.78
1040 18.2 5.6 0.95 18.7 5.0 0.97 7.8 2.0 0.83
1048 17.3 5.2 0.96 15.0 4.0 0.97 7.0 1.8 0.68
1056 17.4 5.3 0.96 15.0 4.0 0.97 7.0 1.8 0.83
1064 17.5 5.4 0.95 15.1 4.0 0.97 5.7 1.5 0.85

Table 9.8

Measured computing times for zero sums, n = 1000, for all environments time of AccSign normed to 1

CPU Intel Pentium 4 (2.53GHz) Intel Itanium 2 (1.4GHz) AMD Athlon 64 (2.2GHz)
Compiler Intel Visual Fortran 9.1 Intel Fortran 9.0 GNU gfortran 4.1.1

Exp. range PriestS MalcS LAccu PriestS MalcS LAccu PriestS MalcS LAccu

106 33.9 9.3 63.9 24.2 7.0 32.6 15.8 3.9 22.4
159 32.0 9.2 61.8 24.7 7.0 32.2 15.3 3.9 22.1
212 21.2 6.2 42.8 16.7 4.6 21.6 10.0 2.7 14.9
265 14.6 4.5 30.2 12.3 3.5 16.1 7.6 2.0 11.1
318 12.3 3.8 24.2 9.7 2.8 12.8 6.1 1.7 8.9
371 10.1 3.2 20.6 8.3 2.3 10.6 4.8 1.3 7.3
424 8.3 2.6 17.0 7.0 2.0 9.1 4.1 1.1 6.2
477 7.2 2.3 15.2 6.2 1.7 8.0 3.6 1.1 5.5
530 6.6 2.1 13.8 5.6 1.5 7.1 3.2 1.0 4.9
583 6.1 1.9 12.6 4.8 1.4 6.4 2.9 0.9 4.5

emax and emin denote the largest and smallest exponent of the summands, so basically 53 times the number
of bits covered by the summands. Zero sums are fortunate for Malcolm’s and the long accumulator approach
because the exact sum has to be computed. This is seen from the computational results. Here for AMD
Athlon architecture Malcolm’s algorithm outperforms AccSign for large exponent range.

Finally we display the achieved MFlop-rates for Itanium and Athlon architecture in Figure 9.1; for Pentium
4 it looks similarly. As can be seen, AccSign achieves for not too large exponent range a little better rate
than AccSum. The MFlop-rates for the other algorithms do not change since in any case the exact bit
representation is calculated.

10. Appendix. Following we prove (6.5), that is we show

R̃ := τ2 −∆ ∈ F(10.1)

under the assumptions of Lemma 6.3 and for σ > 1
2eps

−1eta. Note that (10.1) implies R = fl(τ2 − ∆) =
τ2 −∆. Since σ is a power of 2, we have

σ ≥ eps−1eta .(10.2)

We already know by (6.4) that

∆ = res− τ1 ∈ F .(10.3)
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Fig. 9.1. Measured MFlops for varying exponent ranges

We first prove some facts, namely

σ ≤ |τ1| ⇒ ∆, R̃ ∈ epsσZ ,(10.4)
1
2
eps−1σ ≤ |τ1| ⇒ res ∈ {pred(τ1), τ1, succ(τ1)} ,(10.5)

1
2
eps−1σ ≤ |τ1| and res 6= τ1 ⇒ τ2 ·∆ ≥ 0 .(10.6)

If σ ≤ |τ1|, then res = fl(τ1 + τ ′2), (2.8) and (2.4) yield res ∈ eps · ufp(τ1) ⊆ epsσZ, so res, τ1, τ2 ∈ epsσZ
from ∆, R̃ ∈ epsσZ and (3.9), proving (10.4).

Furthermore, (3.12), (3.14), (3.9) and the assumption 1
2eps

−1σ ≤ |τ1| imply σ ≤ 2eps · ufp(τ1) and

|τ ′2| ≤ (1 + eps)|τ2 + τ3| ≤ |τ2|+ eps|τ2|+ (2M − 2)epsσ

< |τ2|+ 2M+1eps2ufp(τ1) ≤ |τ2|+ 2−M+1eps · ufp(τ1)

≤ |τ2|+ 1
2
eps · ufp(τ1) ,

so that τ1 = fl(τ1 + τ2) and res = fl(τ1 + τ ′2) imply (10.5). If res 6= τ1, then sign(τ2) = sign(τ ′2) =
sign(res− τ1) = sign(∆) by (10.3) and the monotonicity of rounding, so (10.6).

Proof of (10.1). We use the notation in Lemma 3.5, especially (3.12). We distinguish several cases.

First, assume |τ1| < σ. Then (3.9) yields τ2 ∈ epsσZ and |τ2| ≤ eps · ufp(τ1) < epsσ, so τ2 = 0 and
R̃ = −∆ ∈ F by (10.3).

Second, assume σ ≤ |τ1| < 3
5eps

−1σ. Then (3.12), (2.9), (3.15) and (3.14) imply

|R̃| = |τ2 −∆| = |τ2 − τ ′2 + δ1| ≤ |τ2 − τ ′2|+ eps|τ1 + τ ′2|
≤ |τ3|+ eps|τ2 + τ3|+ eps|τ1|+ eps(1 + eps)|τ2 + τ3|
≤ eps|τ1|+ eps(2 + eps)|τ2|+ (1 + eps)2|τ3|
≤ eps(1 + 3eps)|τ1|+ 2Mepsσ

< σ ,

(10.7)

and (2.5), (10.4) and (10.2) prove R̃ ∈ F.

Henceforth, we may assume without loss of generality res 6= τ1 because otherwise ∆ = res − τ1 = 0 and
R̃ = τ2 ∈ F. For the remaining cases 3

5eps
−1σ ≤ |τ1|, so (10.5) yields

res ∈ {pred(τ1), succ(τ1)} .(10.8)
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Third, assume 3
5eps

−1σ ≤ |τ1| < eps−1σ. Then ufp(τ1) = 1
2eps

−1σ and

|∆| = |res− τ1| ≤ 2eps · ufp(τ1) = σ

by Lemma 2.1. But |τ2| ≤ eps · ufp(τ1) = 1
2σ, so that τ2 ·∆ ≥ 0 by (10.6) gives

|R̃| = |τ2 −∆| ≤ σ .

Hence (2.5), (10.4) and (10.2) prove R̃ ∈ F also for that case.

Fourth and last, assume |τ1| ≥ eps−1σ. We first show that in Algorithm 3.3 (Transform) the “repeat-until”-
loop is executed only once, i.e. the final value for m is m = 1. To establish a contradiction, suppose the final
value of m satisfies m ≥ 2. Then the “until-condition” with Φ replaced by 22Meps implies

|t(m−1)| < fl(22Mepsσm−2) = 2Mσm−1 = 2Mσ ≤ 2−Meps−1σ ≤ 1
4
eps−1σ .

On the other hand, σ = σm−1, (3.3) and |τ1| ≥ eps−1σ imply

|t(m−1)| = |τ1 + τ2 − τ (m)| > (1− eps)|τ1| − σ ≥ (1− eps)eps−1σ − σ >
1
2
eps−1σ ,

a contradiction. Hence m = 1 is the final value of m in Algorithm 3.3 (Transform), and (3.3) in Lemma 3.4
yields

τ1 + τ2 = % + τ (1) and |τ (1)| ≤ (1− 2−M )σ .(10.9)

Next we prove that (10.8) implies

|τ1| = eps−1σ and |∆| = σ .(10.10)

Note that by |τ1| ≥ eps−1σ the distance of τ1 to its predecessor or successor is at least σ. We distinguish
two cases. First, assume τ1 = %. Then (10.9) implies τ2 = τ (1) and therefore |τ2| ≤ (1 − 2−M )σ. Hence
(3.12), (3.14) and 22Meps ≤ 1 yield

|τ ′2| ≤ (1 + eps)|τ2 + τ3| ≤ (1 + eps)
(
1− 2−M + neps

)
σ ≤ (1 + eps)

(
1− 2Meps + (2M − 2)eps

)
σ < σ .

The assumption |τ1| ≥ eps−1σ, res = fl(τ1 + τ ′2) 6= τ1 and Lemma 2.1 prove |τ1| = eps−1σ, |res| =
pred(|τ1|) = |τ1| − σ and |∆| = |res − τ1| = σ, and thus (10.10). Second, assume τ1 6= %. In this case
|τ (1)| < σ by Lemma 3.4, |τ1| ≥ eps−1σ and τ1 = fl(τ1 + τ2) = fl(% + τ (1)) 6= % together with Lemma 2.1
imply |τ1| = eps−1σ, |%| = pred(|τ1|) = |τ1| − σ and τ1τ2 ≤ 0. Now (10.6) yields sign(τ1) = −sign(res− τ1),
and therefore |τ1| > |res| = |τ1| − σ by (10.8). This proves (10.10).

Finally we have |τ2| ≤ eps ·ufp(τ1) = σ, we know τ2∆ ≥ 0 by (10.6), and together with |∆| = σ this certifies
|R̃| = |τ2 −∆| ≤ σ. Therefore (10.4) together with (2.10) yield (10.1). This finishes the proof of (6.5). ¤

11. Summary. We presented algorithms to calculate the sign of a sum, summation with K-fold faith-
fully rounded, with directed rounding and rounded-to-nearest result. The paper contains as well the ingre-
dients to compute a rounded to nearest result in K-fold accuracy. All our algorithms use only floating-point
addition, subtraction and multiplication in one working precision, no branches in the inner loops and no
special operations. Similar algorithms for dot products are easily developed using the error-free transfor-
mation TwoProduct of a product of two floating-point numbers into a sum (cf. [5], see also [18]). For
all algorithms presented in Part I and II of this paper and in [18] we put a Matlab reference code on
http://www.ti3.tu-harburg.de/rump .

The algorithms are based on so-called error-free transformations. We hope to see these computationally and
mathematically highly interesting operations in future computer architectures and floating-point standards.
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