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FAST HIGH PRECISION SUMMATION ∗

SIEGFRIED M. RUMP † , TAKESHI OGITA ‡ , AND SHIN’ICHI OISHI §

Abstract. Given a vector pi of floating-point numbers with exact sum s, we present a new algorithm with the following

property: Either the result is a faithful rounding of s, or otherwise the result has a relative error not larger than epsKcond (
∑

pi)

for K to be specified. The statements are also true in the presence of underflow, the computing time does not depend on the

exponent range, and no extra memory is required. Our algorithm is fast in terms of measured computing time because it allows

good instruction-level parallelism. A special version for K = 2, i.e., quadruple precision is also presented. Computational

results show that this algorithm is more accurate and faster than competitors such as XBLAS.

Key words. summation, precision, accuracy, faithful rounding, error-free transformation, distillation, extra precision basic

linear algebra subroutines, XBLAS, error analysis

AMS subject classifications. 15-04, 65G99, 65-04

1. Introduction and previous work. We will present yet another new and fast algorithm to compute
an approximation of high quality of the sum and the dot product of vectors of floating-point numbers. Since
dot products can be transformed into sums without error [26], we concentrate on summation.

Sums of floating-point numbers are ubiquitous in scientific computations, and there is a vast amount of
literature to that, among them [35, 1, 2, 3, 7, 8, 9, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 33, 34, 36, 37, 38], all aiming on some improved accuracy of the result. Higham [10] devotes an entire
chapter to summation. Accurate summation or dot product algorithms have various applications in many
different areas of numerical analysis. Excellent overviews can be found in [10, 21].

We consider only algorithms using one working precision, for example, IEEE 754 double precision. One
can distinguish two classes of algorithms: The first class delivers a result “as if” computed in some higher
precision, for example, quadruple precision. The accuracy of the result depends on the condition number of
the sum. Examples of such algorithms are XBLAS [21, 35] or Sum2 and SumK in [26].

The second class of algorithms computes a result to a specified accuracy, for example a faithfully rounded
result. Examples of such algorithms are using a long accumulator [23, 18], or are the newly developed
algorithms in [31, 32] based on error-free transformations. Especially the latter like AccSum (Algorithm 4.5
in [31]) proved to be very fast, often faster than the XBLAS routines although being more accurate.

The new algorithm AccSum has the charming property that the computing time grows with the condition
number: For “simple” problems it is fast, with mildly growing computing time for more difficult problems.
However, as a drawback it requires additional memory of the size of the input vector.
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Often a result “as if” computed in quadruple precision is sufficient, for example for a residual iteration
for systems of linear equations. In this paper we present a new algorithm based on AccSum producing a
result of a quality better than when computed in quadruple precision. Basically no additional memory
is required. Unlike AccSum, there is an upper limit for the computing time, independent of the condition
number. However, for extremely ill-conditioned problems the accuracy of the result deteriorates.

The paper is organized as follows. First we introduce our new machinery introduced in [31] to analyze
floating-point algorithms, namely the “unit in the first place”-notation. It allows to formulate proofs using
inequalities; colloquial conclusions as often used in this realm disappear. In the following section we introduce
and analyze error-free transformations. In Section 4 the new algorithm for general K is presented and
analyzed, where in the following section it is shown how to avoid extra memory, comments for the special
case K = 2, i.e., quadruple precision are added and implementation issues are discussed. The paper concludes
with computational results on representative architectures and an appendix hosting parts of involved proofs.

As in [26], [31] and [32], all theorems, error analysis and proofs are due to the first author of the present
paper.

2. Basic facts. Our new algorithm PrecSum and its analysis is based on algorithm AccSum (Algorithm
4.5 in [31]), which in turn uses ideas in [38]. In the sequel we repeat few basic facts from [31] to make the
present paper mostly self-contained.

The set of floating-point numbers is denoted by F, and U denotes the set of subnormal floating-point numbers
together with zero and the two normalized floating-point numbers of smallest nonzero magnitude. The
relative rounding error unit, the distance from 1.0 to the next larger floating-point number, is denoted by
eps, and the underflow unit by eta, that is the smallest positive (subnormal) floating-point number. For
IEEE 754 double precision we have eps = 2−53 and eta = 2−1074. Then 1

2eps
−1eta is the smallest positive

normalized floating-point number, and for f ∈ F we have

f ∈ U ⇔ 0 ≤ |f | ≤ 1
2
eps−1eta .(2.1)

Note that for f ∈ U, f ±eta are the floating-point neighbors of f . We denote by fl(·) the result of a floating-
point computation, where all operations within the parentheses are executed in working precision. If the
order of execution is ambiguous and is crucial, we make it unique by using parentheses. An expression like
fl
(∑

pi

)
implies inherently that the summation may be performed in any order. We assume floating-point

operations in rounding to nearest corresponding to the IEEE 754 arithmetic standard [11].

In [31] we introduced the “unit in the first place” (ufp) or leading bit of a real number by

0 6= r ∈ R ⇒ ufp(r) := 2blog2 |r|c ,(2.2)

where we set ufp(0) := 0. This gives a convenient way to characterize the bits of a normalized floating-point
number f : They range between the leading bit ufp(f) and the unit in the last place 2eps · ufp(f). The
situation is depicted in Figure 2.1.

As in [31] we will frequently view a floating-number as a scaled integer. For σ = 2k, k ∈ Z, we use the
set epsσZ, which can be interpreted as the set of fixed point numbers with smallest positive number epsσ.
Of course, F ⊆ etaZ. These two concepts, the unit in the first place ufp(·) together with f ∈ F ⇒ f ∈
2eps · ufp(f)Z proved to be very useful in the often delicate analysis of our algorithms. Note that (2.2) is
independent of some floating-point format and it applies to real numbers as well: ufp(r) is the value of the
first nonzero bit in the binary representation of r. It follows

0 6= r ∈ R ⇒ ufp(r) ≤ |r| < 2ufp(r)(2.3)

a, b ∈ F ∩ epsσZ ⇒ fl(a + b) ∈ epsσZ(2.4)
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f � := ufp(f) 2 eps �
Fig. 2.1. Normalized floating-point number: unit in the first place and unit in the last place

neps ≤ 1, ai ∈ F and |ai| ≤ σ ⇒ |fl(
∑n

i=1 ai)| ≤ nσ and
|fl(

∑n
i=1 ai)− (

∑n
i=1 ai)| ≤ n(n−1)

2 epsσ
(2.5)

a, b ∈ F, a 6= 0 ⇒ fl(a + b) ∈ eps · ufp(a)Z ,(2.6)

see (2.9) through (2.20) in [31]. The fundamental error bound for floating-point addition is

f = fl(a + b) ⇒ f = a + b + δ with |δ| ≤ eps · ufp(a + b) ≤ eps · ufp(f) ≤ eps|f | ,(2.7)

cf. (2.19) in [31]. Note that this improves the standard error bound fl(a + b) = (a + b)(1 + ε) for a, b ∈ F
and |ε| ≤ eps by up to a factor 2. Note that (2.7) is also true in the underflow range, in fact addition (and
subtraction) is exact if fl(a± b) ∈ U. For a, b ∈ F and σ = 2k, k ∈ Z,

a, b ∈ epsσZ and |fl(a + b)| < σ ⇒ fl(a + b) = a + b and
a, b ∈ epsσZ and |a + b| ≤ σ ⇒ fl(a + b) = a + b ,

(2.8)

cf. (2.21) in [31]. For later use we apply standard floating-point estimations [10] to derive the following. Let
pi ∈ F, 1 ≤ i ≤ n be given and denote γm := meps/(1−meps). Then 2neps < 1 and µ := fl

(
(
∑n

i=1 |pi|)/(1−
2neps)

)
imply fl(1− 2neps) = 1− 2neps and

∑n
i=1 |pi| ≥ fl

(∑n
i=1 |pi|

)
/(1 + γn−1)

= µ · (1− 2neps)/(1 + γn)
≥ µ · (1− 3neps) .

(2.9)

We define the floating-point predecessor and successor of a real number r with min{f : f ∈ F} < r < max{f :
f ∈ F} by

pred(r) := max{f ∈ F : f < r} and succ(r) := min{f ∈ F : r < f} .

Using the ufp concept, the predecessor and successor of a floating-point number can be characterized as
follows. Note that 0 6= |f | = ufp(f) is equivalent to f being a power of 2.

Lemma 2.1. Let a floating-point number 0 6= f ∈ F be given. Then

f /∈ U and |f | 6= ufp(f) ⇒ pred(f) = f − 2eps · ufp(f) and f + 2eps · ufp(f) = succ(f) ,

f /∈ U and f = ufp(f) ⇒ pred(f) = (1− eps)f and (1 + 2eps)f = succ(f) ,

f /∈ U and f = −ufp(f) ⇒ pred(f) = (1 + 2eps)f and (1− eps)f = succ(f) ,

f ∈ U ⇒ pred(f) = f − eta and f + eta = succ(f) .

The result of algorithm AccSum (Algorithm 4.5 in [31]) is a faithful rounding [6, 29, 4] of the true result.
Basically, a floating-point number f is a faithful rounding of a real number r if there is no other floating-point
number between f and r.

Definition 2.2. A floating-point number f ∈ F is called a faithful rounding of a real number r ∈ R if

pred(f) < r < succ(f) .(2.10)

We denote this by f ∈ 2(r). For r ∈ F this implies f = r.
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We will use the following criterion given in Lemma 2.4 in [31]).

Lemma 2.3. Let r, δ ∈ R and r̃ := fl(r). If r̃ /∈ U suppose 2|δ| < eps|r̃|, and if r̃ ∈ U suppose |δ| < 1
2eta.

Then r̃ ∈ 2(r + δ), that means r̃ is a faithful rounding of r + δ.

A main principle in [26, 31, 32] are error-free transformations: A vector p of floating-point numbers is
transformed into a vector p′ without changing the sum, where one element of p′ is fl(

∑
pi). In the present

paper we use the same principle.

A first step is the transformation of a pair of floating-point numbers a, b into a pair x, y with x = fl(a + b)
and leaving the sum invariant. In [17] Knuth gave the following algorithm.

Algorithm 2.4. Error-free transformation for the sum of two floating-point numbers.

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))

Knuth’s algorithm satisfies

∀ a, b ∈ F : x = fl(a + b) and x + y = a + b.(2.11)

This is also true in the presence of underflow. An error-free transformation for subtraction follows since
F = −F. Algorithm TwoSum requires 6 floating-point operations. The following, faster version by Dekker [6]
applies if a, b are somehow sorted.

Algorithm 2.5. Compensated summation of two floating-point numbers.

function [x, y] = FastTwoSum(a, b)
x = fl(a + b)
q = fl(x− a)
y = fl(b− q)

In [31], Lemma 2.6 we analyzed the algorithm as follows.

Lemma 2.6. Let a, b be floating-point numbers with a ∈ 2eps · ufp(b)Z. Let x, y be the results produced by
Algorithm 2.5 (FastTwoSum) applied to a, b. Then

x + y = a + b , x = fl(a + b) and |y| ≤ eps · ufp(a + b) ≤ eps · ufp(x) .(2.12)

Note that, for example, the commonly used assumption |a| ≥ |b| implies a ∈ 2eps · ufp(b)Z.

3. Extraction of high order parts. A key to our algorithm AccSum (Algorithm 4.5 in [31]) is the
error-free splitting of a vector sum into high order and low order parts. The splitting is in such a way that
the high order parts add without error.

The splitting is depicted in Figure 3.1. Note that neither the high order parts qi and low order part p′i need
to match bitwise with the original pi, nor must qi and p′i have the same sign; only the error-freeness of the
transformation pi = qi + p′i is mandatory. This is achieved by the following fast algorithm [31], where σ

denotes a power of 2 not less than max |pi|. For better readability the extracted parts are stored in a vector
qi. In a practical implementation the vector q is not necessary but only its sum τ .
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� = 2k eps � = 2k�532k�M

input pi output p0i

bold parts sum to �

qi

Fig. 3.1. ExtractVector: error-free transformation
∑

pi = τ +
∑

p′i

Algorithm 3.1. Error-free vector transformation extracting high order part.

function [τ, p′] = ExtractVector(σ, p)
τ = 0
for i = 1 : n

qi = fl ((σ + pi)− σ)
p′i = fl(pi − qi)
τ = fl(τ + qi)

end for

Algorithm 3.1 proceeds as depicted in Figure 3.1. Note that the loop is in particular well-suited for today’s
compilers optimization and instruction-level parallelism.

Theorem 3.2. Let τ and p′ be the results of Algorithm 3.1 (ExtractVector) applied to σ ∈ F and a vector
of floating-point numbers pi, 1 ≤ i ≤ n. Assume σ = 2k ∈ F for some k ∈ Z, n < 2M for some M ∈ N.
Suppose max |pi| ≤ 2−Mσ is true, or fl

(
(
∑n

i=1 |pi|)/(1− 2neps)
) ≤ σ is true. Then

n∑

i=1

pi = τ +
n∑

i=1

p′i , max |p′i| ≤ epsσ , |τ | < σ and τ ∈ epsσZ .(3.1)

Algorithm 3.1 (ExtractVector) needs 4n +O(1) flops.

Remark. As will be seen in the proof, the assumption fl
(
(
∑n

i=1 |pi|)/(1 − 2neps)
) ≤ σ is used to show

that the higher order parts sum without error, i.e., fl(
∑

qi) =
∑

qi. To ensure this, fl
(∑n

i=1 |pi|
) ≤ σ is

not sufficient as by the following example. Let p ∈ F10 with p1···8 = 1 − 4eps − eps, p9 = 16eps and
p10 = −8eps. Then fl

(∑ |pi|
)

= 8 − 24eps < 8 implies σ = 8, q1···8 = 1, q9 = 16eps and q10 = −8eps.
Hence

∑
qi = 8 + 8eps /∈ F.

Proof of 3.2. For |pi| ≤ 2−Mσ the assertions were proved in Theorem 3.4 in [31]. It remains to prove (3.1)
under the assumption fl

(
(
∑n

i=1 |pi|)/(1− 2neps)
) ≤ σ. For each i ∈ {1, · · · , n}, the assumptions of Lemma

3.2 in [31] are satisfied and imply

pi = qi + p′i , max |p′i| ≤ epsσ and qi ∈ epsσZ .
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Using 1− 2neps ∈ F it follows

∑n
i=1 |qi| ≤ ∑n

i=1

(|pi|+ epsσ
)

≤ (1 + γn−1)fl
(∑n

i=1 |pi|
)

+ nepsσ

≤ (1 + γn)fl
(
(
∑n

i=1 |pi|)/(1− 2neps)
) · (1− 2neps) + nepsσ

≤ σ
1−neps (1− 2neps) + nepsσ

< σ ,

(3.2)

so that (2.8) shows fl(
∑

qi) =
∑

qi = τ . The lemma is proved. ¤

To apply Theorem 3.2 the best (smallest) value for M is dlog2(n + 1)e. It can be computed without using
the binary logarithm. Algorithm 3.5 in [31] does this, but it contains a branch. The branch can be avoided
as follows.

Algorithm 3.3. Computation of 2dlog2 |p|e for p 6= 0.

function L = NextPowerTwo(p)
q = eps−1p

L = fl(|(q − p)− q|)

Theorem 3.4. Let L be the result of Algorithm 3.3 (NextPowerTwo) applied to a nonzero floating-point
number p. If no overflow occurs, then L = 2dlog2 |p|e.

Proof. The assumptions imply q /∈ U. First assume |p| = 2k for some k ∈ Z. Then fl(q−p) = fl(q(1−eps)) =
pred(q), so that fl(|(q − p) − q|) = eps|q| = |p|. So we may assume that p is not a power of 2, and without
loss of generality we assume p > 0. Then ufp(p) < p < 2ufp(p) and we have to show L = 2ufp(p). By q /∈ U
and Lemma 2.1 we have pred(q) = q − 2eps · ufp(q), so that q − eps · ufp(q) is the midpoint of pred(q) and
q. Rounding to nearest and

q − eps · ufp(q) = q − ufp(p) > q − p > q − 2ufp(p) = q − 2eps · ufp(q) = pred(q)

imply fl(q − p) = pred(q). Hence L = fl(|pred(q)− q|) = 2eps · ufp(q) = 2ufp(p). The theorem is proved. ¤

4. The general algorithm and its analysis. Let a vector p ∈ Fn be given and abbreviate s :=∑n
i=1 pi. When computing the sum in K-fold precision, i.e., in a floating-point arithmetic flK(·) with relative

rounding error unit epsK , the standard error estimation yields [10]

∣∣flK

( n∑

i=1

pi

)− s
∣∣ ≤ (n− 1)epsK

1− (n− 1)epsK

n∑

i=1

|pi| .(4.1)

That means for nonzero sum the relative error of the floating-point approximation is of the order epsK times
the condition number

∑ |pi|/|
∑

pi| of the sum [10, 31]. Note that estimation (4.1) is essentially sharp as
shown by p ∈ F with p1 = 1 and p2···n = epsK , because rounding tie to even implies flK(1 + epsK) = 1, so
that flK

(∑
pi

)
= 1.

The aim of this paper is to derive an algorithm computing a result res which is a faithful rounding of the
sum s, or which at least satisfies

∣∣res− s
∣∣ ≤ epsK

n∑

i=1

|pi| .

That means we can expect the result to be better than when calculated in K-fold precision. For ease of
analysis we specify the algorithm without overwriting variables.
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53-M bits

)1(τ=∑
)2(τ=∑

µ

'ip
''ip

Fig. 4.1. Extraction by Algorithm PrecSum

Algorithm 4.1. Preliminary version of summation algorithm.

01 function res = PrecSum(p(0),K)
02 n = length(p(0))
03 µ = fl

(
(
∑n

i=1 |p(0)
i |)/(1− 2neps)

)

04 if µ = 0, res = 0, return, end if
05 M = dlog2(n + 2)e
06 L =

⌈
(K · log2 eps− 2)/(log2 eps + M)

⌉− 1
07 σ0 = NextPowerTwo(µ)
08 for k = 0 : L− 1
09 if σk > 1

2eps
−1eta then σk+1 = fl(2Mepsσk); else L = k; break; end if

10 end for
11 if L = 0 then res =

∑n
i=1 p

(0)
i ; return end if

12 for k = 1 : L

13 [τ (k), p(k)] = ExtractVector(σk−1, p
(k−1))

14 end for
15 π1 = τ (1); e1 = 0
16 for k = 2 : L

17 [πk, qk] = FastTwoSum(πk−1, τ
(k))

18 ek = fl(ek−1 + qk)
19 end for
20 res = fl

(
πL + (eL + (

∑n
i=1 p

(L)
i ))

)

The algorithm works as follows (for simplicity we assume eps = 2−53 as in IEEE 754 double precision). First
µ is an upper bound of the sum of absolute values, where the factor 1/(1 − 2neps) takes care of rounding
errors in the computation of µ. Then bits of the pi are extracted in such a way that the unit in the last
place of the high order parts is eps · σ0, where σ0 is the smallest power of 2 greater or equal to µ. If pi is
smaller than eps · σ0, the high order part is 0. One can show that the high order parts add in floating-point
without error into τ (1).

Then 53−M bits from the low order parts p′i are extracted into p′′i , where M is chosen in such a way that
the p′′i add into τ (2) without error. This process is repeated L times. In Figure 4.1 we depict the process
for L = 2 extractions. It follows s =

∑
pi = τ (1) + τ (2) +

∑
p′′i . The number of extractions L is computed

such that rounding errors in the computation of the sum fl(
∑

p′′i ) of the elements of the finally extracted
vector are small enough to either not jeopardize faithful rounding or, to guarantee a relative accuracy as if
computed in K-fold precision.

Proposition 4.2. Let p = p(0) be a vector of n floating-point numbers, let 1 ≤ K ∈ N, define M :=
dlog2(n + 2)e and assume eps ≤ 1

1024 and 22Meps ≤ 1. Assume K ≤ (4√eps)−1. Let res be the result of
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Algorithm 4.1 (PrecSum) applied to p. Abbreviate s :=
∑n

i=1 pi. Then either

res is a faithful rounding of s(4.2)

or, if res is not a faithful rounding of s, then s 6= 0 and

|res− s|
|s| <

3 · (2Meps)L+1

1− 3neps
· cond (

∑
pi) < epsK · cond (

∑
pi)(4.3)

using L as computed in line 6 of PrecSum. Algorithm 4.1 (PrecSum) needs (4L + 3)n +O(K) flops.

Remark 1. The major difference to Algorithm 4.5 (AccSum) in [31] is that in PrecSum the maximum
number of extractions is estimated depending on the desired precision. An advantage is that the number of
extractions and thus the maximum number of flops is known in advance (see the discussion in Section 5 for
the important case K = 2, i.e., twice the working precision), a disadvantage is that possibly more extractions
are performed than necessary.

However, this possible disadvantage seems to be more than compensated because, in contrast to AccSum, no
extra memory of the size of the input vector is needed. We elaborate this in Section 5.

Remark 2. Note that compared to Algorithm 4.5 (AccSum) in [31] we changed the definition of µ from a
maximum to a floating-point sum. This idea is due to the second author.

Remark 3. The code in the last for-loop (lines 16 to 19) gives the same result as Algorithm 4.4 (Sum2)
in [26] applied to τ (1···L) except that the approximation πL and the error term eL is not added but kept
separately. This is true because, as we will show, the input data implies that FastTwoSum and TwoSum yield
identical results.

Remark 4. We counted the absolute value as one floating-point operation. In practice, this often comes
with no extra time, in which case the flop-count can be decreased by n flops.

Remark 5. Note that Algorithm PrecSum definitely achieves a result “as if” computed in K-fold precision,
so that for practical purposes the assumption K ≤ (4√eps)−1 is artificial. In IEEE 754 single precision it
limits K to 1024 or 81640 decimal digits precision, in double precision K is limited to an equivalent of more
than 4 billion decimal digits precision. So the precision is much larger than the exponent range.

Remark 6. We mention that if |∑k
ν=1 τ (ν)| ≥ fl(22Mepsσk−1), the stopping criterion in AccSum, is satisfied

for some k < L, one may replace the computation of res by res = fl
( ∑k

ν=1 τ (ν)
)
, thus skipping sum of

the vector of low order parts p
(L)
i . This saves n flops, and it can be proved that the result res satisfies the

slightly weaker condition fl(s) ∈ {pred(res), res, succ(res)} rather than being a faithful rounding.

Proof of Proposition 4.2. If σ0 is in the underflow range, i.e., σ0 ≤ 1
2eps

−1eta, then the computation
of µ and an estimation like in (3.2) imply

∑n
i=1 |p(0)

i | < σ0. Hence all p
(0)
i and the sum s are in the underflow

range, so that all p
(0)
i add without rounding error. It follows res =

∑n
i=1 p

(0)
i . Henceforth we may assume

σ0 > 1
2eps

−1eta, so that K ≥ 1 implies L ≥ 1.

The splitting constant σk+1 is only computed when σk is not in the underflow range, so that all σk are
positive and computed without rounding error for 0 ≤ k ≤ L. For later use we note that the computation of
L yields (2Meps)L+1 ≤ epsK/4, so that

22Meps2σL−1 = σL+1 ≤ epsK

4
σ0 .(4.4)

Furthermore, a straightforward computation using 22Meps ≤ 1 and eps ≤ 1
128 shows

3
4
≤ 1− 3neps .(4.5)
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The computation of µ implies that the assumptions of Theorem 3.2 are satisfied for k = 0, so that

s =
n∑

i=1

p
(0)
i = τ (1) +

n∑

i=1

p
(1)
i , max |p(1)

i | ≤ epsσ0 = 2−Mσ1 , |τ (1)| < σ0 and τ (1) ∈ epsσ0Z .(4.6)

By max |p(1)
i | ≤ 2−Mσ1 the assumptions of Theorem 3.2 are satisfied for k = 1 as well, and repeating this

argument we conclude that

n∑

i=1

p
(k)
i = τ (k+1) +

n∑

i=1

p
(k+1)
i for 1 ≤ k < L ,(4.7)

and that

s =
k∑

ν=1

τ (ν) +
n∑

i=1

p
(k)
i , max |p(k)

i | ≤ epsσk−1 , |τ (k)| < σk−1 and τ (k) ∈ epsσk−1Z(4.8)

is satisfied for 1 ≤ k ≤ L.

In order to show that the assumptions of Lemma 2.6 for the use of FastTwoSum in line 17 are satisfied, we
first prove

πk ∈ epsσk−1Z for 1 ≤ k ≤ L(4.9)

by induction. For k = 1 this is true by (4.6). By the induction hypothesis πk−1 ∈ epsσk−2Z ⊆ epsσk−1Z.
But also τ (k) ∈ epsσk−1Z by (4.8), so that πk = fl(πk−1 + τ (k)) and (2.4) show (4.9). But 2ufp(τ (k)) ≤ σk−1

by (4.8), so that (4.9) implies πk ∈ epsσk−1Z ⊆ 2eps · ufp(τ (k))Z, and the assumptions of Lemma 2.6 are
indeed satisfied. Hence

πk + qk = πk−1 + τ (k) , πk = fl(πk−1 + τ (k)) and |qk| ≤ eps · ufp(πk)(4.10)

is satisfied for 2 ≤ k ≤ L. Combining (4.8) and (4.10) gives

s = πL +
L∑

k=2

qk +
n∑

i=1

p
(L)
i .(4.11)

We distinguish four cases. First,

assume |π1| ≥ 22Mepsσ0 and L = 1 .(4.12)

Define

τ ′ := fl
( n∑

i=1

p
(1)
i

)
=

n∑

i=1

p
(1)
i − δ .

Then (4.11) implies

s = π1 + τ ′ + δ and res = fl(π1 + τ ′) .(4.13)

Moreover, (4.6) and (2.5) give

|τ ′| ≤ nepsσ0 and |δ| ≤ 1
2
n(n− 1)eps2σ0 .(4.14)

If |π1| < 2eps−1eta, then (4.12) yields

|δ| < 1
2
22Meps2σ0 < eta ,(4.15)
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and F ⊆ etaZ implies δ = 0, so that by (4.13) the result res is even the rounded-to-nearest result fl(s).
Hence we may assume |π1| ≥ 2eps−1eta. Then (4.13), (4.14), neps < 2Meps ≤ 2−M and (4.12) yield

|res| ≥ (1− eps)|π1 + τ ′| > (1− eps)(1− 2−M )|π1| ≥ 1
2
eps−1eta ,

so that res /∈ U. Hence by Lemma 2.3 we have to show |δ| < 1
2eps|res| to prove that res is a faithful

rounding. This follows by (4.14) and

2eps−1|δ| − |res| ≤ n(n− 1)epsσ0 − (1 + eps)|π1 + τ ′|
≤ n(n− 1)epsσ0 − (1 + eps)(22Mepsσ0 − nepsσ0)
≤ (1 + eps)n2epsσ0 − (1 + eps)22Mepsσ0 < 0 .

This concludes the first case. Second,

assume |πk| < 22Mepsσk−1 for all k ∈ {1, · · · , L} .(4.16)

Abbreviate

τ ′ = fl
( n∑

i=1

p
(L)
i

)
=

n∑

i=1

p
(L)
i − δ .(4.17)

We first show qk = 0 for k ∈ {2, · · · , L}, so that by (4.11),

s = πL + τ ′ + δ and res = fl(πL + τ ′) .(4.18)

Indeed (4.9), (4.8) and (4.16) yield πk−1 ∈ epsσk−2Z ⊆ epsσk−1Z, τ (k) ∈ epsσk−1Z and |fl(πk−1 + τ (k))| =
|πk| < σk−1, so that qk = 0 follows by (2.8).

By (4.8) we have max |p(L)
i | ≤ epsσL−1, and (4.17) and (2.5) yield

|τ ′| ≤ nepsσL−1 and |δ| ≤ 1
2
n(n− 1)eps2σL−1 .(4.19)

Hence there is |Θ| ≤ eps with |res − s| = |(1 + Θ)(πL + τ ′) − s| ≤ eps|πL + τ ′| + |δ|, and using |πL| <

22MepsσL−1, (4.19) and n + 2 ≤ 2M imply

|res− s| < 22Meps2σL−1 + neps2σL−1 + 1
2n(n− 1)eps2σL−1

= (22M + 1
2n(n + 1))eps2σL−1

≤ 3
2 · 22Meps2σL−1 = 3(2Meps)L+1 · 1

2σ0 .

If res is not a faithful rounding of s, then s 6= 0 by Definition 2.2, and using 1
2σ0 < µ ≤ σ0, (2.9), (4.4) and

(4.5) proves (4.3) and concludes the second case. Third,

assume |π1| ≥ 22Mepsσ0 and L > 1 .(4.20)

Now, in contrast to the second case, the qk may be nonzero producing a nonzero eL. Thus, an additional
rounding error is introduced in the computation of res. Now the estimations become involved and are moved
to the Appendix.

Fourth and finally,

assume |πk| < 22Mepsσk−1 for 1 ≤ k < m ≤ L and |πm| ≥ 22Mepsσm−1.(4.21)

As in (4.18) we deduce that qk = 0 for 1 ≤ k < m, so that (4.11) writes

s = πL +
L∑

k=m

qk +
n∑

i=1

p
(L)
i .
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Hence for m = L we proceed as in the first case, and for m < L we proceed as in the third case. The proof
is finished. ¤

Note that except the second case in the proof of Proposition 4.2, namely that |πk| < 22Mepsσk−1 for all
k ∈ {1, · · · , L}, the result res is always proved to be a faithful rounding of s.

Next we can determine for which condition numbers the result of Algorithm 4.1 (PrecSum) will definitely be
a faithful rounding. Recall [10, 26] the condition number of a nonzero sum cond (

∑
pi) =

∑ |pi|/|
∑

pi|.

Theorem 4.3. Let p be a vector of n floating-point numbers with nonzero sum s :=
∑

pi, let 1 ≤ K ∈ N,
define M = dlog2(n + 2)e and define L as in Algorithm 4.1 (PrecSum). Assume

cond
( ∑

pi

) ≤ 1− 3neps

2(22M + n)eps(2Meps)L−1
.(4.22)

Then the result res of PrecSum is a faithful rounding of the sum s.

Remark. Note that L is defined by K, n and eps, so that the right hand side in (4.22) depends only the
specified K-fold precision, on the dimension n and the relative rounding error unit eps.

Proof of Theorem 4.3. By the computation of µ in PrecSum and (2.9) we know

n∑

i=1

|pi| ≥ 1
2
σ0(1− 3neps) .

Abbreviating the right hand side in (4.22) by C it follows

|s| ≥ 1
2C

σ0(1− 3neps) .(4.23)

For the purpose of establishing a contradiction, suppose (4.16) is true. Then (4.18), (4.8) and σL−1 =
(2Meps)L−1 imply

|πL| − 22MepsσL−1 ≥ |s| − |∑n
i=1 p

(L)
i | − 22MepsσL−1

≥ 1
2C σ0(1− 3neps)− (n + 22M )eps(2Meps)L−1σ0

≥ 0 .

This contradicts (4.16), which means |πk| ≥ 22Mepsσk−1 must be true for some k ∈ {1, · · · , L}. The result
follows. ¤

For example, for IEEE 754 double precision and K = 2 and K = 3 corresponding to quadruple and 6-fold
precision, respectively, we display some data in Table 4.1. First, for different dimensions n, the number of
extractions L is shown. Furthermore, we display the condition number C, CepsK and the number of flops.
They mean the following. For condition number up to C the result is definitely a faithful rounding. For given
K and condition number C, we may expect a result with a relative error of the order CepsK as displayed
in columns 4 and 8 in Table 4.1. Instead, PrecSum produces a faithfully rounded result, i.e., with relative
error not more than eps = 1.1 · 10−16. Therefore the result of PrecSum is significantly better than the one
produced by computing in K-fold precision.

As can be seen by Table 4.1, for K = 2 corresponding to quadruple precision the number of extractions is 2
or 3. We will make use of this fact in a specialized Algorithm QuadSum in the next section.

For comparison we mention that XBLAS summation [21, 35] requires 10n flops, and Sum2 [26] requires 7n

flops. Both produce a result “as if” computed in quadruple precision. Moreover, Sum3 [26] requires 13n flops
and produces a result “as if” computed in 6-fold precision. This is the theoretical flop count; the practical,
measured computing time is influenced by many factors. Detailed comparisons are given in Section 6.
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Table 4.1

Condition numbers and flops up to which Algorithm 4.1 (PrecSum) computes faithfully rounded result in double precision

n K = 2 K = 3
L C Ceps2 flops L C Ceps3 flops

30 2 1.2 · 1027 1.5 · 10−5 11n 3 3.4 · 1041 4.6 · 10−7 15n

254 2 2.4 · 1024 3.0 · 10−8 11n 3 8.5 · 1037 1.2 · 10−10 15n

2,046 2 4.7 · 1021 5.8 · 10−11 11n 3 2.1 · 1034 2.8 · 10−14 15n

16,382 2 9.2 · 1018 1.1 · 10−13 11n 4 2.8 · 1042 3.8 · 10−6 19n

131,070 2 1.8 · 1016 2.2 · 10−16 11n 4 8.5 · 1037 1.2 · 10−10 19n

1,048,574 3 3.0 · 1023 3.7 · 10−9 15n 4 2.6 · 1033 3.6 · 10−15 19n

8,388,606 3 7.4 · 1019 9.1 · 10−13 15n 5 8.5 · 1037 1.2 · 10−10 23n

67,108,862 3 1.8 · 1016 2.2 · 10−16 15n 5 3.2 · 1032 4.4 · 10−16 23n

5. Avoiding extra memory and quadruple precision summation. There are two interesting
specializations of Algorithm 4.1 (PrecSum). First, the case K = 2 corresponds to a result as if computed in
(in fact, better than) twice the working precision. There are prominent competitors like XBLAS [21, 35],
and our previous Algorithm Sum2 in [26].

Second, we can fix the number of extractions to L = 1. This corresponds to a little less than twice the
working precision. Up to a certain condition number, depending on the vector length, a faithfully rounded
result is still guaranteed. A lower bound for this condition number C can be computed by Theorem 4.3 and
is displayed in Table 5.1. Note that we fixed the number of extractions to L = 1, so that the number of
floating-point operations is fixed.

Table 5.1

Condition numbers up to which Algorithm 4.1 (PrecSum) with L = 1 computes faithfully rounded result

n L C flops
30 1 4.2 · 1012 7n

254 1 6.8 · 1010 7n

2,046 1 1.0 · 109 7n

16,382 1 1.6 · 107 7n

Algorithm 4.1 (PrecSum) was specified without overwriting variables to ease the analysis. Following we
comment on an actual implementation and expand ExtractVector in the main loop in PrecSum. For clarity,
variables are still not overwritten.

Algorithm 5.1. The inner loop of Algorithm 4.1 (PrecSum).

for k = 1 : L

τ (k) = 0
for i = 1 : n % [τ (k), p(k)] = ExtractVector(σk−1, p

(k−1))

q
(k)
i = fl

(
(σk−1 + p

(k)
i )− σk−1

)

p
(k+1)
i = fl(p(k)

i − q
(k)
i )

τ (k) = fl(τ (k) + q
(k)
i )

end for
end for

The inner loop produces an array of n × L elements p
(k)
i , and the elements are computed columnwise.

However, the computations are sufficiently independent and can be performed rowwise as well.
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Therefore we can rearrange the inner loop of PrecSum as in Algorithm 5.2. The intermediate extracted
parts are directly summed into τ (1···L). This summation is error-free. The final extracted parts p

(L)
i are also

summed directly into P without the need of extra storage.

Algorithm 5.2. Improved inner loop of Algorithm PrecSum.

for k = 1 : L, τ (k) = 0; end for % initialization
P = 0
for i = 1 : n

π = pi

for k = 1 : L

q = fl((σk−1 + π)− σk−1) % extraction
π = π − q % error-free
τ (k) = τ (k) + q % error-free

end for
P = fl(P + π) % avoid extra vector

end for

In a practical application, the working precision and the desired precision K are usually fixed or at least
known in advance. For example, for IEEE 754 double precision and K = 2, i.e., for producing a result of
(better than) quadruple precision, we know by Table 4.1 that L = 2 or L = 3. That means we can expand
the loop on L to improve the performance. We name that algorithm QuadSum.

Algorithm 5.3. Inner loop of Algorithm QuadSum.

if L = 2 then
τ (1) = τ (2) = P = 0
for i = 1 : n

π = pi

q = fl((σ0 + π)− σ0) % first extraction
π = π − q % error-free
τ (1) = τ (1) + q % error-free
q = fl((σ1 + π)− σ1) % second extraction
τ (2) = τ (2) + q % error-free
P = fl(P + (π − q)) % avoid extra vector

end for
else

... similar code for L = 3 computing τ (1), τ (2), τ (3), P

end if

Again, the variable P in Algorithm 5.3 hosts the floating-point sum
∑

p
(L)
i of the final low order parts. It

is clear how to implement the entire algorithm QuadSum.

The main advantage of rearranging the inner loop into a rowwise computation is that no extra memory of
the size of the input vector is required. Note one can expect that the achieved accuracy is much better that
computation in quadruple or K-fold precision.

6. Computational results. In the following we give some computational results on different architec-
tures and using different compilers. All programming and measurement was done by the second author.
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Table 6.1

Testing environments

CPU, Cache sizes Compiler, Compile options
I) Intel Pentium 4 (2.53GHz) Intel Visual Fortran 9.1

L2: 512KB /O3 /QaxN /QxN [/Op, see Table 6.2]
II) Intel Itanium 2 (1.4GHz) Intel Fortran 9.0

L2: 256KB, L3: 3MB -O3

III) AMD Athlon 64 (2.2GHz) GNU gfortran 4.1.1
L2: 512KB -O3 -fomit-frame-pointer -march=athlon64 -funroll-loops

Table 6.2

Compile options for Pentium 4, Intel Visual Fortran 9.1

Algorithm Necessity of compile option /Op for inner loop
DSum No
Sum2 Yes, for TwoSum
XBLAS Yes, for TwoSum and FastTwoSum

PrecSum No
AccSum No

6.1. Results on summation. We shall evaluate the performance of our high precision summation
algorithms. All algorithms are tested in three different environments, namely Pentium 4, Itanium 2 and
Athlon 64, see Table 6.1. We carefully choose compiler options to achieve best possible results, see Tables
6.1 and 6.2. We use a simple trick like in Algorithm 3.1 (ExtractVector) |σ + pi| −σ instead of (σ + pi)−σ

to avoid overdoing the code optimization/simplification by the Intel compiler for the Pentium 4 environment.
For details, see [31].

Test examples for huge condition numbers larger than eps−1 were generated by Algorithm 6.1 in [26], where
a method to generate two vectors whose dot product is arbitrarily ill-conditioned is described. Dot products
are transformed into sums by Dekker’s and Veltkamp’s Algorithms Split and TwoProduct, see [26].

First, we compare PrecSum with the ordinary, recursive summation DSum, with Sum2 taken from [26] and
the XBLAS summation algorithm BLAS_dsum_x from [35] (called XBLAS in the following tables) in terms
of measured computing time. The latter two deliver a result as if calculated in quasi-quadruple precision.
We test sums with condition number 1016 for various vector lengths. This is the largest condition number
for which Sum2 and XBLAS produce an accurate result. We compare to recursive summation DSum, the time
of which is normed to 1. This is only for reference; for condition number 1016 we cannot expect DSum to
produce a single correct digit. In addition, we also compare to our accurate summation algorithm AccSum

[31]. Note that the comparison is not really fair since AccSum produces always a faithfully rounded result
independent of the condition number. We summarize the properties of the algorithms tested:

Algorithm DSum Sum2 XBLAS PrecSum (L = 1) PrecSum (L = 2) AccSum

Precision eps O(n2)eps2 O(n)eps2 O(n2)eps2 O(n3)eps3 adaptive
flops n 7n 10n 7n 11n adaptive

Note that the estimated minimum precision is displayed; in practice it is usually better (see Figure 6.2).
The results are displayed in Tables 6.3, 6.4 and 6.5. For example, PrecSum with L = 1 achieves on the
different architectures a remarkable factor of about 5, 9 or 10 compared to recursive summation, and the
results of PrecSum with L = 2 follow. We also see that PrecSum with L = 1, 2 is significantly faster than
XBLAS, on Pentium 4 even faster than Sum2. As has been mentioned earlier, this is in particular due to
a better instruction-level parallelism of AccSum and Sum2 as analyzed by Langlois [19]. We also observe a
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Table 6.3

Measured computing times for cond = 1016, time of DSum normed to 1 (CPU: Intel Pentium 4 2.53GHz, Compiler: Intel

Visual Fortran 9.1)

n Sum2 XBLAS PrecSum PrecSum AccSum

(L = 1) (L = 2)
100 23.53 77.06 10.00 14.71 14.12
400 26.67 86.67 8.00 12.67 12.00

1,600 19.02 65.85 5.37 8.78 9.76
6,400 19.00 68.00 5.50 9.00 9.00

25,600 18.14 62.33 4.65 8.37 12.09
102,400 1.99 6.92 2.09 2.14 8.24
409,600 2.01 6.65 2.01 1.96 8.22

1,638,400 1.99 6.62 2.04 1.99 8.16

Table 6.4

Measured computing times for cond = 1016, time of DSum normed to 1 (CPU: Intel Itanium 2 1.4GHz, Compiler: Intel

Fortran 9.0)

n Sum2 XBLAS PrecSum PrecSum AccSum

(L = 1) (L = 2)
100 2.53 15.19 4.37 5.65 7.69
400 5.78 38.84 8.07 10.96 13.13

1,600 7.11 49.74 9.12 12.70 15.42
6,400 7.40 51.45 9.35 13.10 15.75

25,600 7.95 56.16 9.95 13.89 21.41
102,400 7.34 50.69 9.16 12.96 25.96
409,600 2.08 12.97 3.00 3.83 12.80

1,638,400 2.07 12.98 2.97 3.83 12.76

certain drop in the ratio for larger dimensions due to cache misses. Note that in Table 6.5, DSumU, Sum2U and
XBLASU refer to the unrolled versions, respectively, and the time for DSumU is normed to 1. This is because
we observed a significant difference between the recursive summation DSum and its unrolled version DSumU.
Collecting 4 terms at a time proved to be a good choice.

The good performance of PrecSum becomes transparent when looking at the MFlops-rate. In Figure 6.1 the
MFlops are displayed for the different algorithms on Pentium 4, the figure corresponding to the previously
displayed results. Note that in view of the clock rate of 2.53GHz the performances of the algorithms DSum,
PrecSum and AccSum are fairly good until the cache misses occur.

Next, we compare PrecSum with SumK in terms of result accuracy. The following table displays the minimally
estimated computational precision for SumK with K = 3, 4 and PrecSum with L = 3, 4:

Algorithm SumK (K = 3) SumK (K = 4) PrecSum (L = 3) PrecSum (L = 4)
Precision O(n3)eps3 O(n4)eps4 O(n4)eps4 O(n5)eps5

flops 13n 19n 15n 19n

The flop count for PrecSum with L = 4 is the same as that for SumK with K = 4. However, the computational
precision of PrecSum with L = 4 is much higher, so that its result accuracy is expected to be much better.
To confirm it, we test sums

∑n
i=1 pi for n = 1000 with the condition number varying from 10 to 1080. The

results of relative errors for the summation algorithms are displayed in Figure 6.2. In Figure 6.2, the dashed
lines represent the error bounds nkepskcond (

∑
pi) for k = 1, 2, . . . , 5 from the left to the right.
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Table 6.5

Measured computing times for cond = 1016, time of DSumU normed to 1 (CPU: AMD Athlon 64 2.2GHz, Compiler: GNU

gfortran 4.1.1)

n Sum2U XBLASU PrecSum PrecSum AccSum

(L = 1) (L = 2)
100 8.71 24.09 9.39 15.24 14.29
400 10.08 28.18 9.45 16.33 15.05

1,600 10.59 30.05 9.56 16.90 16.05
6,400 10.79 30.64 9.75 16.19 16.37

25,600 5.41 15.27 4.89 8.55 10.99
102,400 2.17 5.94 2.53 3.60 8.44
409,600 2.00 5.49 2.47 3.42 7.92

1,638,400 2.00 5.51 2.44 3.44 7.95
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Pentium 4 (2.53GHz), Intel Visual Fortran 9.1, cond = 1016
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Fig. 6.1. Measured MFlops on Pentium 4 (2.53GHz), Intel Visual Fortran 9.1, cond = 1016

From the results, we can see that the quality of the results obtained by PrecSum with L = 4 is several
orders of magnitude better than that by SumK with K = 4, as expected. Moreover, it can also be seen that
the quality of the actual results by the summation algorithms is usually much better than the worst case
estimation, as mentioned before.

6.2. Results on matrix-vector product. Next, we shall apply our summation algorithm PrecSum

to the computation of a residual Ax − b with sparse A = (aij) ∈ Fn×n and x, b ∈ Fn, and evaluate its
performance in parallel computing on a shared memory machine. We assume that CRS (Compressed Row
Storage) format is used for storing a sparse matrix A, a standard row-oriented storage format. We transform
products aij · xj for 1 ≤ j ≤ n into sums by Dekker’s and Veltkamp’s Algorithms Split and TwoProduct.
Using CRS format, no extra working memory is necessary to compute Ax (in contrast to AT x). We use the
following computer environment:

CPU: Intel Dual-Core Xeon 2.80GHz × 4 processors (8 cores in total)
Compiler: GCC 4.2.4

Compile option: -O3 -march=nocona -funroll-all-loops

Parallelization: OpenMP supported by the compiler (-fopenmp)



FAST HIGH PRECISION SUMMATION 17

10
0

10
20

10
40

10
60

10
80

10
−15

10
−10

10
−5

10
0

cond

R
el

at
iv

e 
er

ro
r

 

 

DSum

Sum2

SumK (K=3)

SumK (K=4)

PrecSum (L=1)

PrecSum (L=2)

PrecSum (L=3)

PrecSum (L=4)

Fig. 6.2. Relative errors of several summation algorithms, n = 1000

Table 6.6

Ratio of computing time (1 core), elapsed time for DDotMV is normed to 1.

name n nnz(A) Dot2MV PrecMV PrecMV

(L = 1) (L = 2)
cryg10000 10,000 49,699 4.33 6.00 10.33
rajat26 10,605 424,587 3.23 4.50 7.27
rajat23 51,032 249,302 3.27 4.50 7.14
venkat01 62,424 1,717,792 4.30 4.84 6.56
invextr1 new 110,355 556,938 7.79 8.00 10.32
ASIC 680ks 113,076 3,805,068 2.69 3.79 6.21
Hamrle3 682,712 2,329,176 2.76 4.14 6.72
pre2 643,994 6,175,377 3.66 4.63 7.07
cage13 1,447,360 5,514,242 3.88 4.29 6.12
rajat30 1,505,785 27,130,349 3.33 4.38 6.25
cage14 4,690,002 20,316,253 3.78 4.22 6.11
cage15 5,154,859 99,199,551 3.68 4.12 5.74
Theoretical 25 25 33

We wrote a straightforward (not manually unrolled) code for the computation of Ax−b using the algorithms
based on PrecSum (called PrecMV). The time for the ordinary algorithm based on floating-point dot products
(called DDotMV) is normed to 1. Moreover, we use our previous algorithm Dot2 taken from [26] (called
Dot2MV). The latter delivers a result as if calculated in quasi-quadruple precision.

As a sparse matrix A, various test matrices can be obtained from University of Florida Sparse Matrix
Collection [5], among which we choose pairs of matrices of similar dimension but with significantly different
number of elements. The dimensions vary from ≈ 104 to about 5 · 106, and n-vectors x and b are randomly
generated. We compare to DDotMV, the time of which is normed to 1.

The results are displayed in Tables 6.6 and 6.7. Without parallelization (Table 6.6), PrecMV with L =
1, 2 achieves a remarkable factor of about 4, 6 or 10 compared to the standard routine DDotMV. With
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Table 6.7

Ratio of computing time (8 cores), elapsed time for DDotMV is normed to 1.

name n nnz(A) Dot2MV PrecMV PrecMV

(L = 1) (L = 2)
cryg10000 10,000 49,699 1.95 2.32 2.95
rajat26 10,605 424,587 1.59 2.05 2.84
rajat23 51,032 249,302 1.15 1.44 2.07
venkat01 62,424 1,717,792 1.10 1.12 1.40
invextr1 new 110,355 556,938 2.50 2.66 3.28
ASIC 680ks 113,076 3,805,068 1.06 1.18 1.65
Hamrle3 682,712 2,329,176 1.14 1.18 1.55
pre2 643,994 6,175,377 1.04 1.15 1.56
cage13 1,447,360 5,514,242 1.16 1.22 1.53
rajat30 1,505,785 27,130,349 1.61 2.06 2.42
cage14 4,690,002 20,316,253 1.17 1.17 1.50
cage15 5,154,859 99,199,551 1.19 1.21 1.47
Theoretical 25 25 33

Table 6.8

Average of speed-up ratios and parallel efficiencies in terms of execution time (1 core vs. 8 cores), and average of MFlops.

DDotMV Dot2MV PrecMV (L = 1) PrecMV (L = 2)
Speed-up ratio 1.63 4.60 5.16 5.95

Parallel efficiencies 20% 58% 65% 74%
MFlops (1 core) 277 909 738 659

MFlops (8 cores) 449 4,049 3,856 3,937

parallelization (Table 6.7), the factor even drops to a value of about 1 to 3. Note that all the routines
including DDotMV can be very easily parallelized by OpenMP directives. We also see that PrecMV with L = 1
is slightly slower than Dot2MV, and PrecMV with L = 2 is about 50% slower than Dot2MV although of much
better quality.

The high performance of Dot2MV and PrecMV, in particular with parallelization, becomes transparent when
looking at the parallel efficiency. In Table 6.8, average of speed-up ratios and parallel efficiencies in terms
of execution time are displayed. It can be seen that the parallel efficiencies of Dot2MV and PrecMV are much
better than that of DDotMV.

The inefficiency of DDotMV is due to the following overheads concerning memory access to fetch data of aij

and xj :

• intermittent memory access according to random indices of sparse matrices,
• limited memory bandwidth of the architecture in use, especially for parallel computations on the

shared memory machine.

On the other hand, in Dot2MV and PrecMV, both these drawbacks are diminished because after fetching aij

and xj more floating-point operations are performed on this data. These factors are reflected in Mflops-rate
displayed in Table 6.8. As a result, the ratio of measured computing time for Dot2MV and PrecMV to DDotMV

becomes much less than the theoretical one.
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7. Appendix. We have to prove that the result res of Algorithm 4.1 is a faithful rounding of s =
∑

p
(0)
i

under the assumptions

|π1| ≥ 22Mepsσ0, σ0 >
1
2
eps−1eta and L > 1.(7.1)

We first prove the following lemma.

Lemma 7.1. Let p ∈ Fn be a vector of floating-point numbers. Assume the following code is applied to p:

π1 = p1; e1 = 0
for i = 2 : n

[πi, qi] = TwoSum(πi−1, pi)
ei = fl(ei−1 + qi)

(7.2)

Abbreviate s :=
∑n

i=1 pi and S :=
∑n

i=1 |pi|. Then the following is true.

πn = fl

(
n∑

i=1

pi

)
,

en = fl

(
n∑

i=2

qi

)
and |en| ≤ (1 + γn−1)γn−1S ,

∣∣∣∣∣en −
n∑

i=2

qi

∣∣∣∣∣ ≤ γ2
n−1S ,

s =
n∑

i=1

pi = πn +
n∑

i=2

qi and |πn + en − s| ≤ γ2
n−1S.

Proof. By Lemma 4.2 in [27] we have

n∑

i=2

|qi| ≤ γn−1S,

hence using

|en| ≤ (1 + γn−1) ·
n∑

i=2

|qi| and |πn + en − s| = |en −
n∑

i=2

qi|

and standard error estimations the results follow. ¤

Now we prove the result res of Algorithm 4.1 to be a faithful rounding of s :=
∑n

i=1 pi under the assumption
(7.1). The code

π1 = τ (1); e1 = 0
for k = 2 : L

[πk, qk] = FastTwoSum(πk−1, τ
(k))

ek = fl(ek−1 + qk)

in lines 15 to 19 to compute πL and eL is identical to (7.2) except that FastTwoSum is used. However, (4.10)
shows that FastTwoSum and TwoSum produce identical results, so that the assertions of Lemma 7.1 are true.
Abbreviate ϕ := 2Meps. Then σk+1 = ϕσk = ϕkσ0 for 0 ≤ k < L, and using Lemma 7.1 and (4.8) we obtain

πL = fl

(
L∑

k=1

τ (k)

)
,(7.3)
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L∑

k=1

|τ (k)| < |τ (1)|+
L∑

k=2

σk−1 < |τ (1)|+ ϕ

1− ϕ
σ0 =: Sτ ,(7.4)

|eL| ≤ (1 + γL−1)γL−1Sτ ,(7.5)

∣∣∣∣∣πL + eL −
L∑

k=1

τ (k)

∣∣∣∣∣ =

∣∣∣∣∣eL −
L∑

k=2

qk

∣∣∣∣∣ ≤ γ2
L−1Sτ .(7.6)

Furthermore,

πL = fl

(
L∑

k=1

τ (k)

)
=

L∑

k=1

(1 + Θ(k)
L−1) · τ (k) with |Θ(k)

L−1| ≤ γL−1 ,

so that (7.4) implies

|πL| ≥ (1− γL−1)|τ (1)| − (1 + γL−1)
∑L

k=2 |τ (k)|

≥ (1− γL−1)|τ (1)| − (1 + γL−1)
ϕ

1− ϕ
σ0 .

(7.7)

Setting 2−m := eps, the definition of L in line 6 of Algorithm 4.1, M ≤ m/2, m ≥ 10 and K ≤ (4√eps)−1

imply

L =
⌈

mK + 2
m−M

⌉
− 1 ≤

⌈
2K +

4
m

⌉
− 1 ≤ 2K ≤ 1

2√eps
.

This yields

γL−1 =
(L− 1)eps

1− (L− 1)eps
≤

1
2

√
eps− eps

1− 1
2

√
eps + eps

≤ 1
2
√
eps

1− 2√eps

1− 1
2

√
eps + eps

≤ 1
2
√
eps ,

(1 + γL−1)γL−1 ≤ 1
4 (2 +√

eps)√eps .

(7.8)

Abbreviate

eL = fl
(∑L

k=2 qk

)
=

∑L
k=2 qk − δ

′′′
,

τ ′′ = fl
(∑n

i=1 p
(L)
i

)
=

∑n
i=1 p

(L)
i − δ′′ ,

τ ′ = fl(eL + τ ′′) = eL + τ ′′ − δ′ .

(7.9)

Then (7.6), (7.5) and (7.8) yield

|δ′′′ | ≤ 1
4epsSτ and

|eL| ≤ 1
4 (2 +√

eps)√epsSτ =: f1 · Sτ .

(7.10)

By assumption L > 1, so that (4.8) gives

max
i
|p(L)

i | ≤ epsσL−1 ≤ ϕepsσ0,

and (2.5) and (7.9) yield

|τ ′′| ≤ nϕ eps σ0 < ϕ2σ0 and

|δ′′| ≤ 1
2n(n− 1)eps · ϕ eps σ0 < 1

2ϕ3σ0 .

(7.11)
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Combining this with (7.10) shows

|eL + τ ′′| < f1 · Sτ + ϕ2σ0 and

|δ′| ≤ eps|eL + τ ′′| .

(7.12)

We will use Lemma 2.3 to prove that res is a faithful rounding of s =
∑

pi. For that we use (4.11) and

s = πL +
∑L

k=2 qk +
∑n

i=1 p
(L)
i

= πL + eL + δ′′′ +
∑n

i=1 p
(L)
i = πL + eL + τ ′′ + δ′′ + δ′′′

= πL + τ ′ + δ′ + δ′′ + δ′′′,

so that

s = r + δ with r := πL + τ ′, δ := δ′ + δ′′ + δ′′′ and res = fl(r).(7.13)

A lower bound for res is given by (7.7), |τ ′| ≤ (1 + eps)|eL + τ ′′| and

|res| ≥ (1− eps)(|πL| − |τ ′|) ≥ (1− eps)(1− γL−1)|τ (1)| − (1 + γL−1)
ϕ

1− ϕ
σ0 − |eL + τ ′′|

:= f2 · |τ (1)| − f3 · σ0 − |eL + τ ′′| .
(7.14)

If |π1| < (1− 2−M−1)eps−1eta, then we claim that all floating-point operations in the computation of res
are exact so that res = s. To prove that we first use (4.8) and (7.1) to see

n∑

i=1

|p(1)
i | ≤ nepsσ0 < 2Mepsσ0 ≤ 2−M |π1| < 2−Meps−1eta.

Because 2Mepsσ0 and eps−1eta are powers of 2, it follows

n∑

i=1

|p(1)
i | ≤ 2−M−1eps−1eta,

and (4.6) and τ (1) = π1 give

n∑

i=1

|p(0)
i | ≤ |τ (0)|+

n∑

i=1

|p(1)
i | < eps−1eta.

Therefore ufp(p(0)
i ) ≤ 1

2eps
−1eta for 1 ≤ i ≤ n and all operations on τ (k) and p

(k)
i are exact and res = s.

Assume |π1| ≥ (1 − 2−m−1)eps−1eta. Then (7.14), (7.8) and γL−1 ≤ 1
64 , (7.12), f1 ≤ 64

4096 and π1 = τ (1)

yield

|res| ≥ (1− eps)
63
64
|τ (1)| − 65

64
ϕ

1− ϕ
σ0 − 65

4096
(|τ (1)|+ ϕ

1− ϕ
σ0)− ϕ2σ0

≥
[
59
61

(1− 2−M−1)− 33
32

ϕ

1− ϕ
− ϕ2

]
eps−1eta =: Ψ · eps−1eta.

For M = 2 we have ϕ ≤ 2Meps ≤ 1
256 and ϕ

1−ϕ ≤ 1
255 , so that Ψ > 1

2 . And for M ≥ 3 we have ϕ ≤ 2−M ≤ 1
8 ,

ϕ
1−ϕ ≤ 1

7 and 2−M−1 ≤ 1
16 , so that again Ψ > 1

2 . Hence res /∈ U and by Lemma 2.3 it remains to show
2|δ| < eps|res| to prove res to be a faithful rounding of s.
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We obtain by (7.12), (7.11), (7.10), (7.14), ϕ
1−ϕ ≤ (1 + 2M+1eps)ϕ and 2M√eps ≤ 1,

2eps−1|δ| − |res| ≤ 2|eL + τ ′′|+ 2Mϕ2σ0 + 1
2Sτ − f2|τ (1)|+ f3σ0 + |eL + τ ′′|

≤ (3f1 + 1
2 )Sτ + (3ϕ2 + 2Mϕ2 + f3)σ0 − f2|τ (1)|

≤ (3f1 + 1
2 − f2)|τ (1)|+ ((3f1 + 1

2 )
ϕ

1− ϕ
+ 3ϕ2 + 2Mϕ2 + f3)σ0

≤ (− 1
2 + 7

4eps + 2√eps)|τ (1)|+ ((3f1 + 1
2 + 1 + 1

2

√
eps)

ϕ

1− ϕ
+ 3ϕ2 + 2Mϕ2)σ0

≤ (− 1
2 + 7

4eps + 2√eps)22Mσ0 +
[
( 3
2 + 3√eps)(1 + 2M+1eps) + 3ϕ + 2Mϕ

]
ϕσ0

=
[− 2M−1 + 3

2 + (2M+3 + 22M )eps + (2M+1 + 3 + 3 · 2M+1eps)√eps
]
ϕσ0

≤ [− 2M−1 + 3
2 + 22Meps(2−M+3 + 1) + 2M√eps(2 + 2−M+2)

]
ϕσ0

=: ∆ .

By Lemma 2.3 we have to show ∆ < 0. This follows directly for M = 2 and M = 3, and for M ≥ 4 we have

2eps−1|δ| − |res| ≤ ϕσ0(−2M−1 + 3
2 + 2−M+3 + 1 + 2 + 2−M+2)

≤ ϕσ0(−2M−1 + 6)

< 0

This proves |δ| < 1
2eps|res|, so that res is a faithful rounding of s by Lemma 2.3. The proof is finished. ¤
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